K-Commerce: la vendita on-line di prodotti/servizi “Intangibili”

Risultato immagini per vendita dell'intangibileE’ noto come l’e-commerce consenta di sviluppare il processo di acquisto e vendita di prodotti  (tangibili) con mezzi elettronici (shopping online), come le applicazioni mobili e Internet. L’e-commerce di prodotti/servizi “tangibili” è cresciuto enormemente negli ultimi decenni, spesso provocando una sostanziale sostituzione dei tradizionali negozi di mattoni e malta.  Il valore delle transazioni on-line per l’acquisto di beni e servizi “tangibili” gode di meccanismi di economie di scala, di incremento della competitività internazionale delle imprese,  di modelli di business innovativi.

Nell’attuale competizione tra tecnologie intelligenti e umanità consapevole non ci sono vinti o vincitori, ma piuttosto un rapporto sinergico che dovrebbe essere finalizzato in ultima analisi, alla sostenibilità della vita dell’uomo sulla terra (o su altri pianeti), man mano che si accresce la numerosità della popolazione mondiale.

Il Valore del Capitale Intangibile (Fattore K)

Grazie ad una maggiore diffusione e consapevolezza sulle metodologie e sugli strumenti dell’Intelligenza Artificiale (Artificial Intelligence) e, in particolare, dell’Ingegneria della Conoscenza (Knowledge Engineering),  oggi è possibile  “vendere” non la conoscenza in quanto tale (intangibile), ma il “beneficio” economico o funzionale (tangibile) che essa produce, ad un “prezzo” che sarà commisurato ai risultati ottenuti. Ad esempio, nel caso di un algoritmo (Modello di Conoscenza) capace di far risparmiare decine di migliaia di kilowattora di energia elettrica, il prezzo dell’algoritmo non è quello di un ebook nel quale è contenuto, ma è proporzionale al valore del risparmio economico ottenuto.

    • AMBIENTE & ENERGIA
    • IMPRESE & Tecnologie 4.0
    • TALENTI Interdisciplinari 4.0

Risultato immagini per economia della conoscenza

Nell’Economia della Conoscenza, il termine di K-Commerce (Knowledge-Commerce) si riferisce alla possibilità di commercializzare (misurare, valorizzare, proteggere) la conoscenza (capitale intellettuale) per contenuti funzionali o “a pacchetti“, con metodologie e strumenti tali da rendere la transazione di acquisto, del tutto simile a quella corrispondente ad un prodotto tangibile, anche (ma non solo) utilizzando piattaforme elettroniche di e-commerce.  Il termine K-Commerce è stato coniato nell’era della Economia della Conoscenza motivato dal fatto che in una economia basata soprattutto sul “sapere” e sul “saper fare“, risulta di fondamentale importanza lo sviluppare strumenti appropriati innovativi per gestire la conoscenza, non solo come “middleware” per generare valore nel modo che già conosciamo (consulenza, e-learninge-book ecc.), ma direttamente come valore tangibile in sé, protetto da un concetto di copyright innovativo, del quale si parlerà più avanti. Pertanto, il K-Commerce esprime non solo un nuovo modo di commercializzare il sapere, ma rappresenta l’insieme delle metodologie e degli strumenti per:

    • gestire la conoscenza in termini “quantitativi” (e non solo qualitativi degli intangibiles) e quindi, misurabili;
    • organizzare package funzionali di conoscenza  (Modelli di Conoscenza) finalizzati ad ottenere risultati (vantaggi) economici determinabili e quindi, misurabili;
    • trasferire agli utilizzatori finali detti package funzionali di conoscenza, in modo che prevalga l’interesse per il valore ottenibile dal suo utilizzo, piuttosto che dalle modalità in cui la conoscenza risulti rappresentata e configurata.

Proprio su quest’ultimo concetto, si basa la possibilità di realizzare “barriere” per la protezione della conoscenza, ovvero della proprietà intellettuale (copyright),  spostando il polo di attrazione e interesse verso il “risultato” che la stessa produce, piuttosto che sulla propria forma.

Comunicazione Interdisciplinare: un “booster” per lo sviluppo dei processi di innovazione condivisa

Estratto dalla PRESENTAZIONE del eBook (G.Mappa, 2018):  COMUNICAZIONE INTERDISCIPLINARE – Algoritmi di Comunicazione ProAttiva e Apprendimento Interdisciplinare

Saper comunicare non significa essere necessariamente oratori, ma essere abili nell’arrivare agli interlocutori, nel superare le possibili barriere linguistiche o culturali, nel generare una partecipazione emotiva; ma ancora più importante, nell’ottenere il “risultato” pianificato: un contratto, un coinvolgimento, un riconoscimento, ecc.

Comunicare in maniera efficace è come rispettare le “partiture” di una composizione musicale: esiste la scelta delle note (parole) con la loro durata temporale, le pause, il ritmo, gli accordi, ecc.

Entrano in gioco diversi strumenti musicali (interlocutori), ciascuno con il proprio suono distintivo (altezza, timbro, intensità), ma che combinato a quello degli altri nel rispetto di opportune dinamiche e sintonie, fanno sì che la composizione musicale (risultato) risulti efficace e generi emozioni. Se è il pentagramma è il codice di riferimento (linguaggio comune) per tutti gli strumenti dell’orchestra, è il direttore d’orchestra (coordinatore interdisciplinare) a preparare (exAnte), a guidare verso il risultato e a verificare (exPost) il raggiungimento degli obiettivi e gli effetti emozionali prodotti.

Comunicazione Interdisciplinare: comunicare in maniera collaborativa e coordinata (come in una orchestra) per raggiungere il risultato.

In analogia, in una riunione di lavoro dove possono essere presenti diversi interlocutori con differenti culture o competenze (ad es.: un medico, un ingegnere, un biologo e un amministrativo), che discutono su un tema “trasversale”, sarebbe molto difficile dialogare e soprattutto, trarre una sintesi conclusiva condivisa sulle azioni da intraprendere, se non ci fosse a farlo, almeno un coordinatore interdisciplinare (direttore d’orchestra) in grado di comprendere il linguaggio e le motivazioni di tutti, per convergere ad un risultato “win-win”.

Nella figura che segue, vengono raffigurati due casi contrapposti di una riunione dove: nella prima (a sinistra) permane la “multidisciplinarità” e quindi, permangono conclusioni distinte; nell’altra (a destra), le conclusioni convergono in un’unica sintesi concettuale interdisciplinare.

Confronto tra comunicazione multidisciplinare (left) e interdisciplinare (right)

L’analogia appena illustrata rappresenta il “Fil-Rouge” della trattazione dell’eBook il cui titolo “Comunicazione Interdisciplinare, è esplicativo del tentativo di fornire, a chi si trova spesso ad operare in ambiti multidisciplinari o multiculturali, una metodologia di approccio logica e di buon senso.

Come nel caso del “direttore di orchestra”, che deve innanzi tuttopreparare” il concerto con i diversi componenti (azione exAnte proattiva), deve “condurre” (al risultato)  il concerto e deve “concluderlo” (ex-post) cercando di ottenere la risposta del pubblico, in questo eBook saranno trattate le “dinamiche” di cui si compone una comunicazione professionale efficace in contesti multidisciplinari e complessi (comunicazione interdisciplinare) e il “linguaggio comune” (interdisciplinare) che è possibile utilizzare “per comprendere e farsi comprendere”, basato su un originale e innovativo utilizzo di “modelli di conoscenza” e di “analogie concettuali”.

Il neologismo della “Comunicazione Interdisciplinare” viene definito, più compiutamente, nell’eBook come binomio di due fattori sinergici: la comunicazione proattiva e la conoscenza interdisciplinare.

L’eBook riporta alcuni modelli concettuali per sviluppare le proprie abilità alla “pro-azione” nei processi comunicativi, ad es. come la” focalizzazione” e la capacità di proporre, prima degli altri, una soluzione nuova e stimolante, che cambia le regole del gioco o che è qualcosa di utile, ecc.

Vengono altresì riportati alcuni modelli di conoscenza in grado di supportare la comprensione delle diverse possibili situazioni comunicative complesse o multidisciplinari, nonché favorire lo sviluppo della capacità analitica di comprensione dei bisogni degli interlocutori (focalizzazione), della individuazione di soluzioni condivise (persuasione) in grado di generare la partecipazione (coinvolgimento) nel raggiungimento “win-win” degli obiettivi prefissati.

I contenuti e gli aspetti innovativi proposti si basano sull’utilizzo di un linguaggio sintetico logico-matematico come “linguaggio comune e condiviso” (a valenza trasversale), in grado di mettere in relazione fra di loro le componenti di valore (“sostanza”) in un processo di comunicazione, distinguendo gli aspetti (“forma”) legati al lessico e al glossario dei termini specifici dei diversi interlocutori di uno scenario multiculturale.

Chiave di volta dell’approccio “unificante” sul quale si basa il presente lavoro, è il fatto che per facilitare i rapporti comunicativi con i diversi interlocutori, è possibile impostare la propria strategia di comunicazione lavorando sulla separazione dei due aspetti: la “forma” (lessico, glossario) specifica dell’interlocutore, rispetto alla sostanza” (modelli di conoscenza risolutori) che invece, riguarda gli algoritmi mentali da applicare per raggiungere lo scopo. Si mette in atto così, un approccio di comunicazione interdisciplinare, basata da un lato sull’utilizzo del “vocabolario” specifico richiesto caso per caso (cosa non particolarmente difficile oggi con l’uso di internet), dall’altro sull’attuazione di strategie basate sull’utilizzo di modelli di conoscenza.

Si introducono gli strumenti innovativi per una Comunicazione Interdisciplinare, che è innanzi tutto, una comunicazione professionale e quindi, etica, basata su un concetto di fiducia che nasce da una reputazione, a sua volta costituita da storie e comportamenti corretti, perché ispirati dall’etica professionale.

In ultima analisi, l’eBook propone una “cassetta degli attrezzi”, ovvero metodologie e strumenti per lo sviluppo individuale e di gruppo di una comunicazione professionale più funzionale ed efficace, in grado di rapportarsi con più discipline o “saperi”, per integrare i diversi “punti di vista” in una sintesi concettuale conclusiva, in grado di valorizzare ciò che “unisce” e di minimizzare ciò che “divide”.

Sviluppare una “Conoscenza Efficiente” con i Modelli di Conoscenza (ITKS)

Modelli di Conoscenza come Catalizzatori di Efficienza Cognitiva e Strumento di Sviluppo di Sistemi Decisionali

_____________________________________________________________________________________________

I Modelli di Conoscenza e il loro utilizzo: per definire in maniera esaustiva il concetto di Modello di Conoscenza (Knowledge Model)  bisognerebbe addentrarsi nei meandri delle Scienze Cognitive; per constatarne invece la loro utilità operativa e applicabilità pratica, l’ambito di riferimento è l’Ingegneria della Conoscenza: su questi argomenti esiste infatti un immenso patrimonio di letteratura tecnico-scientifica, a partire addirittura dagli anni ’50. In termini generali, può essere sufficiente affermare come un Modello di Conoscenza sia un algoritmo di “sintesi logico-matematica” in grado di elaborare (inferenziare) una moltitudine di dati/informazioni acquisiti come input da fonti esterne eterogenee, per restituire come output informazioni decisionali rispetto ad un target  prefissato.

In questo contesto, si intende mettere in evidenza come i modelli di conoscenza siano già a noi familiari da tempo e addirittura insiti nella nostra natura di esseri viventi in grado di osservare quanto ci circonda, interpretare tempestivamente gli eventi, gestire le incertezze e prendere delle decisioni di buon senso. Infatti, tutti noi seguiamo dei modelli di riferimento che possono riguardare l’etica, la famiglia, la politica, ecc., come insieme di regole e valori condivisi e collaudati. Esempi tipici di modelli di conoscenza si ritrovano addirittura negli aforismi o nei proverbi, nati dall’esperienza e dalla saggezza popolare: ci aiutano in qualche modo a riflettere e a metterci in allerta (early warning) di fronte ad eventi di pertinenza.

Peraltro, nell’era in cui viviamo dell’Economia della Conoscenza e della ricerca dello sviluppo sostenibile, ciò si tradurrebbe da un lato, nella necessità di gestire la conoscenza secondo principi “tangibili” di economia, introducendo strumenti di misurazione del valore della conoscenza e dall’altro sviluppando un approccio sistematico e interdisciplinare alla risoluzione dei problemi. Tutto ciò si traduce nella necessità di gestire la conoscenza in maniera efficiente, ovvero in maniera tale da raggiungere gli obiettivi nel minor tempo e con la massima economicità, mentre ora sappiamo farlo già in maniera efficace e stiamo ancora imparando a farlo in maniera economica: Net-Economy, Big-Data, Green Energy, Smart City  sono solo alcuni dei possibili contesti che ci richiamano il concetto di conoscenza efficiente [22][23][24][25]. I Modelli di Conoscenza ci aiutano a questo scopo: sono dei “Knowledge Pattern”, sintesi di regole già note o rese tali da opportuni procedimenti di estrazione di conoscenza (Data Mining /Knowledge Extraction), che forniscono le chiavi di lettura della complessità trasformandola in un sistema di knowledge pattern più semplici e sintetici. In altri termini, i modelli di conoscenza fungono da “scorciatoia” o da catalizzatori  nei processi cognitivi per aumentarne l’efficienza. L’approccio dei Modelli di Conoscenza è stata presentato ufficialmente dall’autore della presente memoria per la prima volta nel 1993 a Palermo, in occasione del Congresso ANDIS, come sviluppo di un Sistema Esperto per la gestione dei processi biologici di depurazione delle acque, dimostrando come fosse possibile prevenire le anomalie di processo, incrociando i dati chimico-fisici di processo con le informazioni quali-quantitative relative al comportamento biologico (non-deterministico) dei microorganismi depurativi.

Un modello di conoscenza non è necessariamente qualcosa di complicato, anzi può essere molto semplice, ad esempio se consideriamo la seguente espressione del Valore di un prodotto/servizio:

 Se un prodotto/servizio fornisce le funzionalità f1+f2+f3, il costo di produzione corrispondente sarà c1+c2+c3 e pertanto:

  • se si sbaglia a fornire una o più funzionalità fi perché non corrispondente a quanto richiesto o perché non necessaria, si avrà comunque un costo corrispondente ci e quindi, il Valore Vp sarà inferiore al dovuto: ciò esprime il concetto di Qualità del Prodotto/Servizio;
  • se a parità di fi, riduco i costi ci dislocando l’azienda in paesi dell’estero ove è possibile farlo o acquistando materie prime più economiche il Valore Vp aumenta (virtualmente), ma dal momento che ci (al denominatore) può al limite tendere a zero, dopo di che il prodotto/servizio è perso inevitabilmente: ciò esprime il concetto di una Visione (suicida) di Cash-Flow di breve periodo del Prodotto/Servizio;
  • solo migliorando e incrementando le fi, ovvero investendo in ricerca e innovazione si ha che il Valore si incrementa realmente (al limite all’infinito) ed è in grado di competere sul mercato: ciò esprime il concetto di una Visione (imprenditoriale) di medio-lungo periodo del Prodotto/Servizio;

Come è facile constatare, un semplice rapporto come quello sopraindicato  esprime da solo, un modello di conoscenza che se fosse stato utilizzato dalla politica economica degli ultimi vent’anni, l’Italia oggi si troverebbe a competere con un rafforzato  Made in Italy senza la necessità di svendere le aziende italiane e il patrimonio nazionale [7].

Concetti e Principi Base:Modelli di Conoscenza (Knowledge Models) sono quindi algoritmi che utilizzano il “linguaggio universale” della matematica per sviluppare in maniera quali-quantitativa sintesi di regole, di concetti e di scenari. Entrando più nel merito dell’argomento, è possibile enucleare alcuni concetti sui quali si basa applicazione della metodologia. Risulta necessario infatti definire alcuni punti chiave:

a) Catena della Conoscenza: si tratta del primo principio sul quale si basa la struttura dei modelli di conoscenza, ovvero quello relativo alla Knowledge Chain DIKW (Data/Info/Knowledge/Wisdom), nella quale si distinguono i dati dalle informazioni e queste ultime dalla conoscenza, fino ad arrivare al concetto di saggezza. I dati sono definibili come entità statiche, “fotografie” di fatti e sono quindi espliciti, in genere sono espressi in forma alfanumerica, prodotti da fonti (database, sensori,…) che ne condizionano poi la loro “qualità”.  Le informazioni sono entità dinamiche ed evolutive, caratterizzate da un proprio ciclo di vita, nascono in forma esplicita o latente, sono correlate ad uno o più processi (mentali, personali, ambientali, produttivi, ecc.) ed esercitano su tali processi una propria influenza (o “peso”).  Ad esempio: misurando la temperatura, la pressione atmosferica e l’umidità relativa esterna (dati), si ottiene un’informazione che può essere correlata all’abbigliamento da indossare (processo), condizionata dal “peso” che la stessa informazione ha su una determinata persona piuttosto che su un’altra e dura lo spazio temporale (ciclo di vita) limitato alla rispettive necessità di uscire da casa.

ke2.jpg (1040×296)

Fig.1 – La Catena della Conoscenza DIKW

La catena della conoscenza  DIKW non è solo un legame funzionale, ma esprime anche una azione: “ La conoscenza è informazione in azione“[21]. Con riferimento al DIKW e alle precedenti considerazioni, si potrebbe quindi definire la conoscenza come la facoltà umana risultante dall’interpretazione delle informazioni finalizzata all’azione (Knowledge in Action), ovvero il risultato di un processo di inferenza e di sintesi (ragionamento), a partire da dati verso la saggezza (come ulteriore livello di astrazione dalla conoscenza acquisita).

b)  Indipendenza Strutturale della Conoscenza dal contesto di riferimento: il principio base più innovativo è senza dubbio quello che esprime l’indipendenza della conoscenza dalla struttura lessicale e dal particolare glossario dei termini utilizzato: la struttura della conoscenza non è legata al peculiare ambito applicativo, ovvero: i processi di ragionamento fautori di conoscenza non sonofigli unici di madre vedova”, ma seguono dinamiche trasversali e interdisciplinari che sono ripetitive secondo classi tipologiche che fanno parte di un sistema inerziale nel quale valgono universalmente i principi base della Natura e dell’uomo (v. Piramide dei Bisogni Primari di A.Maslow [20]), a prescindere dagli scenari tecnologici, politici e di mercato del momento. Un esempio per tutti di indipendenza strutturale della conoscenza: l’Ingegneria Biomedica è nata quando finalmente discipline diverse dal punto di vista lessicale e dei contenuti, come la medicina, la fisica, l’ingegneria, la biologia, ecc., si sono incontrate “interdisciplinarmente” nel suddetto sistema di riferimento inerziale, al fine di soddisfare un bene primario come quello della salute.  L’esistenza di una struttura comune della conoscenza consente un’interazione più facile con nuove aree di conoscenza e favorisce lo sviluppo dell’approccio di ragionamento interdisciplinare o “Interdisciplinary Thinking” [7], in quanto anche trovandosi in un contesto nuovo di conoscenza, è possibile riconoscere la struttura (comune) di ragionamento di riferimento e adattarsi velocemente allo specifico lessico e al glossario dei termini utilizzato e infine, essere in brevissimo tempo pro-attivi fornendo il proprio contributo cognitivo.

c)  Propagazione del Grado di Certezza (vs Probabilità): altro principio fondamentale e distintivo dei modelli di conoscenza rispetto ad esempio, all’approccio statistico e probabilistico utilizzato normalmente nello sviluppo di strumenti inferenziali complessi come le ”Reti Bayesiane”, è che nella realtà  industriale (e non solo) è poco frequente disporre di dati sufficientemente numerosi ed affidabili, nonché rappresentativi di un prefissato fenomeno in esame. Spesso viene confusa ad es. l’esistenza di un fenomeno con la frequenza con cui esso appare, fino a commettere l’errore di negarne l’esistenza soltanto perché “poco probabile”: è superfluo sottolineare come le catastrofi che puntualmente si verificano (in Italia e nel mondo) in occasione di ogni evento naturale “anomalo”, siano anche frutto di valutazioni a bassa probabilità… I modelli di conoscenza operano sulla propagazione della certezza, la quale si basa sul seguente concetto: se due o più informazioni input hanno un contenuto informativo inferenziale, eventualmente anche parziale o incerto a favore di una certa conclusione output, quest’ultima, frutto dell’intersezione ”insiemistica “ delle prime due, acquisirà un grado di certezza maggiore di quello contenuto in ciascuna delle informazioni di origine.

d) Computazione Non-Deterministica: i Modelli Matematici possono essere considerati come un particolare sottoinsieme dei Modelli di Conoscenza, ma mentre nei primi si rappresenta la realtà dei fenomeni secondo procedimenti  deterministici e subordinata in genere a delle ipotesi iniziali semplificative, nei modelli di conoscenza la realtà è rappresentata anche nella propria natura non-deterministica, attraverso un approccio sistemico e procedimenti che tengono conto della “naturale” incertezza nei dati e nelle informazioni, rispetto alla minimizzazione degli errori e alla ricerca di soluzioni di “buon senso” (common sense).  Poniamoci infatti, la seguente domanda: nel ragionare e prendere ad es. una decisione, il nostro cervello risolve un sistema di equazioni o risolve per caso un’espressione algebrica? Certo che no. Allora forse c’è un “gap” tra quello che ci hanno insegnato a scuola nell’ambito delle computazione di dati (v. Matematica) e il modo “naturale” di computare informazioni proprie del nostro cervello e poi trasferito alle macchine (v. Intelligenza Artificiale). La computazione non deterministica ci consente di fare operazioni con le informazioni quali-quantitative anziché con i dati, ovvero  con il contenuto informativo che i dati possono o meno esprimere. Un dato può essere considerato come un “insieme” che ha un contenuto informativo percentualmente differente a seconda del contesto e del target a cui è destinato. Ritornando all’esempio precedente sulle condizioni atmosferiche, un valore di temperatura dell’aria esterna di 15 °C rispetto alla scelta di vestirsi in maniera adeguata per uscire di casa fornisce una indicazione decisionale solo parziale (% certezza), se non è sovrapposta alle altre informazioni come ad es. la pressione atmosferica e l’umidità relativa. L’insieme risultante dall’intersezione dei tre insiemi di partenza ottenibile rispetto ad un target di “tempo di pioggia” o di “tempo soleggiato”, fornisce un valore % risultante di certezza più elevato rispetto a quello che ciascun dato di partenza può esprimere singolarmente: se consideriamo che la temperatura di 15°C rispetto al target “meteo-pioggia”, contribuisce per il 30%, mentre la pressione atmosferica per il 25% e l’umidità relativa per il 35%, si avrebbe che la decisione di vestirsi in un certo modo piuttosto che in un altro avrebbe un grado di certezza complessivo del 65,875% (somma insiemistica), che è superiore al 50% di soglia, anche se con ancora un 34,125% di % incertezza che potrebbe essere soddisfatto da un’altra “intersezione insiemistica” fornito da un ulteriore dato (ad es. dal valore della velocità del vento). Alle stesse conclusioni si potrebbe arrivare con dati differenti (v. es. millimetri di pioggia), sia in termini di contenuto informativo che  numerici.

e) Modellazione Reticolare della Conoscenza: dal punto di vista logico, ogni modello di conoscenza è rappresentabile da una “cella informativa base” dotata di “n” dati/info in ingresso (input) e “m” meta-informazioni in output: all’interno della cella è possibile avere differenti relazioni di inferenza input/output: dalla semplice inferenza XY (curva di conoscenza n=1, m=1), fino a intere matrici “n*m” inferenziali. Gli “m” output di una cella possono a loro volta diventare in parte o in toto, input per un’altra cella e così via fino a realizzare una rete di celle in grado di elaborare un numero teoricamente infinito di informazioni.

Un processo tipico di “modellazione” della conoscenza, soprattutto nella realizzazione di sistemi on-line di controllo, segue alcuni passi fondamentali come la formalizzazione e validazione dei dati acquisiti da sorgenti eterogenee esterne, la normalizzazione rispetto ai range di operatività, l’inferenziazione di cross-matching (inferentation-integration-data fusion),  la de-normalizzazione dei risultati target ottenuti (v. Fig.2).

Fig.2 -Processo tipico di Modellizzazione della Conoscenza (Knowledge in Action)

Dal punto di vista concettuale [7], questo processo di modellazione della conoscenza è raffigurabile anche come una rete neurale artificiale costituita da “nodi” (neuroni) come unità base di elaborazione delle informazioni (Basic-Info) e “collegamenti” (sinapsi) come adduttori di inferenza caratterizzata da un grado di certezza (“peso” dinamico non probabilistico).

Grado di innovazione rispetto allo “Stato dell’Arte”: il grado di innovazione di questa metodologia rispetto allo “Stato dell’Arte”, risiede essenzialmente nei seguenti punti:

  1. rispetto alle Reti Neurali Artificiali (ANN) ogni nodo-neurone i-esimo è in grado di elaborare dinamicamente un numero elevato di input/output (multidimensionalità inferenziale), anziché un solo input/output con un’unica (e spesso statica), funzione di inferenza (attivazione);
  2. l’elaborazione inferenziale all’interno di ciascun nodo ha un adattamento continuo (apprendimento), ma rimane sempre “visibile”: è possibile in ogni momento ispezionare la configurazione di ciascun nodo della rete e dei relativi collegamenti-sinapsi, per cui il processo cognitivo è sempre tracciabile (cosa in genere non possibile nelle ANN);
  3. rispetto ai  procedimenti statistico-probabilistici ed in particolare alle Reti Bayesiane, i Modelli di Conoscenza operano sul grado di certezza dei contenuti informativi, secondo un processo incrementale che ne riduce progressivamente l’errore, ottimizzando realisticamente il valore del processo cognitivo: ciò cambia totalmente il punto di vista rispetto al problema della disponibilità di dati storici e dei campioni statisticamente significativi, essendo in grado di utilizzare tutte le informazioni quantitative, qualitative o anche incerte di cui si è a disposizione, giungendo sempre ad una conclusione, con un livello di qualità ovviamente inversamente proporzionale alla stessa qualità degli input.

Campi di Applicazione: l’utilizzo di questi Modelli di Conoscenza offre diverse possibilità, con riferimento sia ai sistemi on-line/real-time e di Early-Warning (EWS), sia ove vi sia la necessità di supportare la diagnostica e la presa di decisione, particolarmente in situazioni caratterizzate da interdisciplinarietà, eterogeneità quantitativa e qualitativa dei dati, come ad es., nei processi ambientali, nella gestione dei processi industriali  e addirittura, nella valutazione di beni intangibili come ad es. il valore della conoscenza stessa.

Lo spettro di azione dello sviluppo dei modelli di conoscenza è comunque molto ampio: a partire dai casi  più semplici (2D) nei quali i modelli di riferimento (in questo caso “Curve di Conoscenza”) sono già noti ed esplici,  ovvero i modelli sono  impliciti e derivanti dall’elaborazione dati storici e dall’esperienza, fino a casi più complessi nei quali si hanno moltissime informazioni quanti-qualitativamente eterogenee derivanti da differenti sorgenti di dati (v. Big-Data), dove è necessario lo sviluppo di modelli di conoscenza del tipo Rete Neurali a Neuroni Esperti (v. Fig.2  XBASE tool, ANOVA).

Fig.3 -Processo tipico di Modellizzazione della Conoscenza (ANOVA XBASE tool – Fig. da ENEA/BATTLE)

Le esperienze applicative dei modelli di conoscenza sviluppate dallo scrivente dal 1993 ad oggi, riguardano soprattutto l’ambito dei Sistemi Esperti di Supporto alle Decisioni, dei Sistemi on-line/real-time di Monitoraggio “Consapevole” e dei Sensori Software Intelligenti. In particolare, sono stati realizzati sistemi per:

  • la rilevazione early-warning del rischio/credito;
  • per il recupero di centri storici post-sisma;
  • sistemi di controllo processo in ambito alimentare (mosto/vino, olio d’oliva EV, caseario),
  • il monitoraggio on-line  della qualità delle acque e del loro trattamento depurativo;
  • il controllo early-warning degli Incendi boschivi e della salvaguardia ambientale;
  • il monitoraggio early-warning degli odori molesti da impianti di trattamento rifiuti;
  • il controllo energy saving di processi biologici;
  • la gestione early-warning/predittiva della manutenzione di impianti industriali;
  • diversi studi fattibilità operativa.

Note conclusivesi è presentata una metodologia sperimentata da parte dell’autore oramai nell’arco di un ventennio e che, nata per sviluppare sistemi basati sulla conoscenza (Knowledge Based System) e sistemi esperti di controllo, ha consentito una generalizzazione dell’approccio mentale rivelatasi molto utile nei processi decisionali. L’esperienza applicativa ha infatti mostrato la possibilità di considerare questa metodologia, oltre che uno strumento per rendere più performanti i sistemi informatici e di controllo automatico, anche come una  vera e propria nuova “forma mentis” che consente di gestire la conoscenza in maniera interdisciplinare ed efficiente (Interdisciplinary Thinking)[7].

Conoscere per competere perché il futuro non è il prolungamento del passato…[7]

Bibliografia

  • [1] Kendal, S.L.; Creen, M. (2007), An introduction to knowledge engineering, London: Springer, ISBN  9781846284755, OCLC 70987401
  • [2] Jackson, Peter (1998), Introduction To Expert Systems (3 ed.), Addison Wesley, p. 2, ISBN 978-0-201-87686-4
  • [3] Mohsen Kahani – “Expert System & Knowledge Engineering in Wikipedia” (2012)
  • http://fumblog.um.ac.ir/gallery/435/Expert_System_Knowledge_Engineering_in_Wikipedia.pdf
  • [4] Pejman Makhfi – “Introduction to Knowledge Modeling” (2013) –  http://www.makhfi.com/KCM_intro.htm#What
  • [5] Luca Console “Problem Solving Diagnostico: Evoluzione e Stato dell’Arte” – Dipartimento di Informatica – Università di Torino – AI*IA Notizie – Anno X n°3 Settembre 1997.
  • [6] L. Console, P. Torasso: “Diagnostic Problem Solving: Combining Heuristic, Approximate and Causal Reasoning”, Van Nostrand Reinhold, 1989.
  • [7] Giovanni Mappa “Interdisciplinary Thinking by Knowledge Sysnthesis” – IlMioLibro Editore (2011). http://ilmiolibro.kataweb.it/schedalibro.asp?id=647468
  • [8] N. Brancati, G. Mappa (2009) “Capturing Knowledge in Real-Time ICT Systems to Boost Business Performance” ANOVA – Cognitive and Metacognitive Educational Systems: Papers from the AAAI Fall Symposium (FS-09-02)
  • [9] Henrion, M. (1987). “Uncertainty in Artificial Intelligence: Is probability epistemologically and heuristically adequate?” In Mumpower, J., editor, Expert Judgment and Expert Systems, pages 105–130. Springer-Verlag, Berlin, Heidelberg.
  • [10] G.Mappa ‐ “Distributed Intelligent Information System for Wastewater Management Efficiency Control” INFOWWATER‐ Wastewater Treatment Standards and Technologies to meet the Challenges of 21s t Century 4‐ 7th April 2000 AD – Queen’s Hotel, Leeds, UK ‐ 2000
  • [11] G.Mappa, et Alii ‐ “Sistema di monitoraggio e gestione del trattamento delle acque cromiche” ‐ AI*IA99 – 6° Congresso della Associazione Italiana per l’Intelligenza Artificiale 7 Settembre 1999 ‐ Facoltà di Ingegneria– BOLOGNA ‐ 1999
  • [12] EDILMED ‐ Convegno “Tecnologie Post‐Industriali trasferibili all’Architettura e all’Edilizia” ‐ Mostra d’Oltremare ‐19‐21 Maggio. Presentazione relazione su XBASEtool: “La Tecnologia dei Sistemi Esperti nell’Edilizia: Qualità Edilizia e Manutenzione Intelligente” ‐ G.Mappa‐ Napoli, 1995.
  • [13] G. Mappa, R. Tagliaferri, D. Tortora – “On- line Monitoring based on Neural Fuzzy Techniques applied to existing hardware in Wastewater Treatment Plants” – AMSEISIS’ 97 – INTERNATIONAL SYMPOSIUM on INTELLIGENT SYSTEMS – September 12, 1997.
  • [14] G. Mappa, G. Falivene, M. Meneganti, R. Tagliaferri – “Fuzzy Neural Networks for Function Approximation” – Proceedings of the 6th International Fuzzy Systems Association World Congress IFSA (1997).
  • [15] G. Mappa – “Distributed Intelligent Information System for Wastewater Management Efficiency Control” – Wastewater Treatment Standards and Technologies to meet the Challenges of 21s t Century 4-7th April 2000 AD – Queen’s Hotel, Leeds, UK.
  • [16] G. Mappa, G. Salvi, G. Tagliaferri, R.  (1995) “A Fuzzy Neural Network for the On-Line Detection of B.O.D.” – Wirn Vietri ’95, VII Italian Workshop on Neural Nets ITALY.
  • [17] G. Mappa, A. Sciarretta, S. Moroni e M. Allegretti (1993) “Sistema Esperto per la Gestione degli Impianti di Trattamento delle Acque Urbane” ‐ Congresso Biennale ANDIS’93 ‐ Palermo ‐ 21‐23 Settembre ‐Vol.II. ‐ 1993
  • [18] “The Fractal Nature of Knowledge”  Arnold Kling – Posted on December 4, 2008 by sethearley. http://sethearley.wordpress.com/2008/12/04/the-fractal-nature-of-knowledge/
  • [19] Benoît B. Mandelbrot, Les objets fractals: forme, hasard et dimension, 1986
  • [20] Abraham Harold Maslow, A Theory of Human Motivation, Psychological Review 50(4) (1943):370-96.
  • [21] Carla O’Dell and C. Jackson Grayson, Jr. – “If Only We Knew What We Know,” Free Press, 1998.
  • [22] http://www.conoscenzaefficiente.it/
  • [23] http://waterenergyfood.net/2013/08/08/it-en-algoritmi-sullo-sviluppo-della-interdisciplinarieta-del-buonsenso-e-del-valore/
  • [24] http://waterenergyfood.net/2013/06/10/il-valore-della-conoscenza-nellera-della-net-economy-2-parte/
  • [25] http://waterenergyfood.net/2013/06/18/il-valore-della-conoscenza-nellera-della-net-economy-3-parte/

Approccio Statistico “ANOVA” vs “Modelli di Conoscenza” nell’Analisi di Processi Biologici

A-KM METODOLOGIA DI APPROCCIO: Modelli di Conoscenza

La scelta della metodologia dei “Modelli di Conoscenza”, nasce dall’esigenza di controllare e ottimizzare la funzionalità di un processo complesso che, specialmente se presenta una sezione  “biologica” e input (carichi) variabili quali-quantitativamente nel tempo, non può essere assimilato ad un processo ciclico ripetitivo.

Pertanto, si sceglie in questi casi di non seguire un tradizionale approccio statistico (v. ANOVA– ANalysis Of VAriance), in quanto basato essenzialmente su dati storici e in genere molto costoso, preferendo un approccio più vicino agli esperti di processo, basato sulla “fusione” interdisciplinare tra dati rilevati e conoscenza degli esperti: i Modelli di Conoscenza.

Principi Base del Metodo basato sui Modelli di Conoscenza

a) Approccio Sistemico: realtà suddivisa in processi unitari (input/output), interagenti tra loro

b) Significatività e Rappresentatività delle Misure: è molto importante assicurarsi che i campioni oggetti di indagine siano realmente rappresentativi della realtà operativa o di classi di esse; pertanto le prove vanno eseguite definendo i parametri di caratterizzazione, come ad es.: Valore X = ¦[Xmin, Xmax, Xmed, X+freq, durata(X+freq)]

c) Modellazione delle Inferenze Input/Output: algoritmi di correlazione sistemica.

CONFRONTO METODOLOGIE PRO CONTRO

Modelli Statistici

 

  • Forniscono una analisi più oggettiva rispetto ai dati acquisiti (storici).

 

  • Metodologia più conosciuta.
  • Elaborano dati storici e quindi sono poco generalizzabili: interpretazione dei dati al passato.
  • Più costosi perché necessitano di numerose prove per realizzare un campione statistico rappresentativo
  • Risolvono gli errori e le discrepanze come Varianza Statistica e sulla base di Test Multifattoriali di Significatività (ANOVA – Analysis of Variance) non sempre generalizzabili.
  • Risultati  in Output in genere non generalizzabili e non migliorabili incrementalmente, se non a costo di ripetere l’intera analisi.
Modelli di Conoscenza
  • Interpretazione dei dati rispetto all’attualità operativa, perché si basano su dati il cui valore è quello derivante dall’esperienza operativa aggiornata come “media ragionata” (valore più frequente e plausibile).
  • Meno costosi perché basati su un numero di prove minimo necessario a definire le classi operative di funzionamento.-   Risolvono gli errori e le discrepanze attraverso la Cross-Correlation delle informazioni assunte e sulla base della propagazione della certezza.
  • Risultati in Output generalizzabili (per definizione) e migliorabili incrementalmente.
  • Forniscono una analisi più influenzabile dalla expertise degli operatori  che detengono la conoscenza.

 

  • Metodologia meno conosciuta.

Giovanni Mappa

  • Manager dell’Innovazione (CInO)
  • Responsabile della Ricerca e Sviluppo in ambito di Finanza Agevolata (R&D Manager).

Ho maturato una consolidata esperienza in posizione di responsabilità nella gestione di rilevanti programmi e progetti (oltre 10 Mil.€) di innovazione tecnologica/trasformazione digitale e della divisione ICT presso aziende/gruppi societari di rilevante complessità organizzativa e funzionale, con strutture (RSI) dedicate alla trasformazione digitale e tecnologica.

Settori di attività e di mercato

I settori di attività di attuale interesse sono prevalentemente la Digitalizzazione dei processi aziendali e produttivi, l’Ingegneria di Manutenzione e l’utilizzo di tecnologie di Energia Sostenibile  (solare, eolica, fotovoltaica, biogas, idrogeno) e l’Ambiente (acque, rifiuti, aria). In questi ambiti opero con funzioni direttive ed esecutive sulle attività di:

  • Ricerca Industrialee Sviluppo Prototipale in ambito meccatronico ed informatico (ICT/AI).
  • Gestione di strumentidiretti e indiretti di Finanza Agevolata nell’ambito della R&S (rif.: Horizon Europe/ EIC Accelerator e Pathfinder).
  • Sviluppo di piattaforme in cloud “software as a service” S.a.a.S.(in ambito Industry 4.0: IoT Blockchain) e piattaforme di monitoraggio intelligente di processo e di controllo avanzato (APC).

Obiettivi

  • Aiutare le aziende a stabilire e raggiungere obiettivi innovativi.
  • Gestire il cambiamento (di mentalità) in azienda(Change Management), operando un percorso di transizione che dalla situazione attuale (“as is” : dove siamo) fissa un obiettivo (“to be”: dove vogliamo arrivare) e una transizione (“how to get”: come ci arriviamo). Operare con modelli di Open Innovation, Digital Trasformation, Ecological Transformation, per rendere sostenibile anche tecnologicamente il Change Management.
  • Mi piacerebbe in futuro poter affrontare nuove sfide, anche in settori di mercato differenti da quelli già frequentatati.

Istruzione

  • Laurea Magistrale in Ingegneria Meccanica/Impianti (Università di Bari)ed Esame di Stato per l’abilitazione alla professione di Ingegnere.
  • Formazione Post-Laurea: vincitore di Borsa di Studiocome “Ricercatore Industriale” (c/o CSM  Centro Sperimentale Metallurgico in ambito Finsider) [ Ing. M. Ghersi – Ing G. Todarello].
  • Formazionenell’ambito applicativo delle tecnologie ICT e dell’Intelligenza Artificiale, delle metodologie dell’Ingegneria della Conoscenza (Data Analytics, Machine Learning, Knowledge Exstraction) all’interno del Consorzio di Ricerca SESPIM (5 anni) [vari docenti dell’UNISA tra cui: Vincenzo Loia – Prof. Roberto Tagliaferri].
  • Formazione sulle metodologie di gestione del Capitale Intellettuale(Intangibles IPR) per lo sviluppo delle opportunità di business, nell’ambito della R&S e dello sviluppo di nuovi prodotti/servizi. Metodologie per la Gestione degli Intangibles, per lo sviluppo delle Opportunità di Business. [docente: ssa Annie Brooking in ALENIA)
  • Formazione Avanzata “Teoria e Pratica di Project & Information Management nel Campo dell’Ingegneria” OICE Academy.
  • Qualificazione e certificazione UnionCamere/MISE come “Manager dell’Innovazione”.
  • Specializzazione Universitaria “BLOCKCHAIN FOR PROFESSIONAL AND BUSINESS SERVICE“– A.A. 2019/2020.
  • Formazione APRE sull’utilizzo di strumenti di Finanza Agevolataregionali, nazionali ed europei (rif.: Horizon Europe/ EIC Accelerator e Pathfinder).
  • Altri corsi di formazione professionale e di aggiornamento.

Competenze

  • Capacità di approccio Interdisciplinare e MVP (Minimum Viable Product) nella gestione della complessità della R&S e dell’innovazione finalizzata a nuovi prodotti/servizi.
  • Esperienza di Program Managemente conoscenza delle moderne metodologie di gestione, coordinamento e sviluppo di progetti complessi attraverso modelli Agile (Scrum).
  • Abilità organizzative per la gestione del cambiamento e la negoziazione nell’organizzare progetti e processi di innovazione in modo strutturato e continuativo e tale da favorire la creazione di un ambiente creativo e propositivo, in grado di cogliere tutti gli stimoli interni ed esterni all’organizzazione per la generazione di nuove idee.
  • Leadership e alta capacità di problem solvingper la gestione delle risorse e dei team di R&D, in grado di valorizzare le risorse umane che contribuiscono ai processi di innovazione.
  • Pianificazione economico-finanziaria pluriennale (roadmap, business plan, simulazioni economico-finanziare dei progetti di innovazione) e di Project Management; consolidata esperienza (quali/quantitativa) nella gestione e nella realizzazione degli investimenti.
  • Visione strategica dei processi di innovazione, finalizzata a guidare lo sviluppo tecnologico in modo coerente con il business dell’azienda e con gli scenari sociali, tecnologici, informatici e normativi che potrebbero affermarsi.
  • Forte senso di responsabilità; affidabilità;puntualità; creatività; passione per il proprio lavoro.
  • Buona padronanza della lingua inglese,acquisita non solo mediante corsi specifici, ma anche attraverso i numerosi rapporti e ruoli ricoperti in piena autonomia all’estero (Olanda,Germania, Inghilterra, Spagna).

Esperienze professionali

  • Delegato del Consiglio Direttivo per il Coordinamento delle Iniziative PMI nella BLU ECONOMY – CTN-BIG Cluster Tecnologico Nazionale “Blue Italian Growth”  Centri di Ricerca  (Nov. 2017 – in corso) Napoli.
  • Responsabile area RSI e Manager dell’Innovazione(1 Maggio 2017 – in corso)  – NATURA Srl  Via G.Rossini, 16 Casoria (NA)

Attività di gestione dell’area RSI (Ricerca Sviluppo Innovazione) per l’applicazione delle tecnologie di digitalizzazione della “Corporate Knowledge, di nuove idee/PoC (Proof of concept), di nuovi prodotti/processi, prototipazione, gestione del portafoglio di progetti di ricerca, sviluppo e innovazione, analisi di nuove opportunità di mercato. Tra i principali progetti ed esperienze professionali specifiche sulle tecnologie impresa 4.0, svolti nell’ambito RSI o in corso di svolgimento (2017-2019): con il supporto della finanza agevolata (MISE, POR Campania), vengono qui di seguito riportati:

* Sviluppo del progetto di ricerca PREMATIC-LAB (MISE 2016 “Tecnologie di fabbricazione e trasformazione avanzate”) per l’automazione del Laboratorio di Preanalitica con la realizzazione di un prototipo di apparecchiatura meccatronica complessa (asservita da robot antropomorfi a 6 assi) in grado di automatizzare alcune delicate fasi del ciclo produttivo che si riferiscono alla preparativa dei campioni, che tipicamente venivano svolte “a mano” costituendo un “collo di bottiglia” per la produttività dello stesso laboratorio.

*  Sviluppo del progetto di ricerca ROBILAUT (MISE 2018 “Fabbrica Intelligente”) per la realizzazione di un prototipo di dispositivo robotico campionatore mobile a navigazione sotterranea autonoma e intelligente (IoT/Cyber-Physical-System), un sistema che interagisce direttamente e dinamicamente con il mondo reale che lo circonda (cumuli di terreno) secondo tracciati digitalizzati 3D personalizzabili, per il prelievo e omogeneizzazione di campioni da sottoporre ad analisi.

*  Sviluppo del progetto di ricerca CAMSOL-ARIA (POR CAMPANIA FESR 2014-2020 – Asse Prioritario 1 “Ricerca e Innovazione”) per la realizzazione di prototipi di “camini solari per l’abbattimento low-cost degli inquinanti atmosferici”.

  • Responsabile area RSI e Manager dell’Innovazione(1 Aprile 2017 – in corso) – ARETHUSA Srl  e (Via G.Rossini, 14 Casoria (NA)

Attività di gestione dell’area RSI (Ricerca Sviluppo Innovazione) per l’applicazione delle tecnologie di digitalizzazione della conoscenza, di nuove idee/PoC (Proof of concept), di nuovi prodotti/processi, prototipazione, gestione del portafoglio di progetti di ricerca e sviluppo, analisi di nuove opportunità di mercato. Sviluppo di processi di innovazione tecnologica (ICT, Cloud Computing, Data Analytics, BIM, Laser Scanning, IoT, Distributed Ledgers e Blockchain nell’ambito dell’organizzazione efficiente della manutenzione) all’interno dell’azienda, curando anche la contaminazione culturale e organizzativa in termini strategici di Digital Transformation. Tra i principali progetti ed esperienze professionali specifiche sulle tecnologie impresa 4.0, svolti nell’ambito RSI o in corso di svolgimento (2017-2019): con il supporto della finanza agevolata (MISE, POR Campania), vengono qui di seguito riportati:

*  Responsabile tecnico-scientifico del progetto di ricerca REASSET (MISE 2018 “Fabbrica Intelligente”) per la realizzazione di un prototipo di Piattaforma tecnologica MaaS (Maintenance as a Service) basata sull’utilizzo integrato di IoT-Blockchain, per la condivisione inter-operativa e trasparente di informazioni autenticate e protette, riguardanti la valorizzazione e la gestione operativa in tempo REale degli ASSET tecnico-impiantistici e delle transazioni tecnico-economiche relative alle interazioni tra i diversi soggetti coinvolti nell’intera filiera del Facility Management (Responsabile del Progetto: Ing. Giovanni Mappa).  In particolare, la piattaforma REASSET prevede l’impiego integrato di tecnologie IoT/Nodi Fog per la localizzazione (georeferenziazione) e rilevazione e gestione locale dello stato funzionale e prestazionale degli asset di manutenzione, unitamente alla Blockchain che, da parte sua, consente di gestire in maniera distribuita e sicura, l’identità certificata degli oggetti, la tracciabilità storica dei dati e delle operazioni, la sicurezza delle transazioni contabili (Distributed Ledgers), operare con gli Smart-Contracts con i fornitori di fiducia (Community), il rispetto delle normative di riferimento, ecc.

* Responsabile del progetto di ricerca DIGGERly (DIGital acquisition and technical leadGER of reality): piattaforma innovativa SaaS basata su tecnologie “knowledge embedded”, per il censimento digitalizzato e la caratterizzazione tecnica dello stato di consistenza degli elementi impiantistici di patrimoni immobiliari, finalizzata alla generazione (semi)automatica di base dati di anagrafica tecnica di manutenzione.

* Responsabile tecnico-scientifico del progetto di ricerca PROBIM (MISE 2016 “Tecnologica di contenuto e di gestione dell’informazione” TIC) per la realizzazione di un prototipo di piattaforma “tecnologica di contenuto e di gestione dell’informazione” (TIC), basato su tecnologie di progettazione parametrica BIM (Building Information Modeling) e di capitalizzazione dell’esperienza acquisita (motori di ricerca semantica su web e da repository aziendali) e la Lesson Learned (piattaforma Alfresco Digital Business), in grado di supportare in maniera collaborativa e interdisciplinare il team che lavora per lo sviluppo di offerte competitive di qualità, nell’ambito delle gare di appalto nei settori di interesse (Responsabile del Progetto: Ing. Giovanni Mappa).

* Sviluppo del progetto di ricerca (concluso) SMART-CASE (Consorzio STRESS) per .la progettazione di edifici Nzeb (Nearly Zero Energy Building) sulla base di materiali isolanti ecologici, infissi ad alte prestazioni, impianti ad alto rendimento insieme ad altri accorgimenti strutturali. Studio e definizione di un sistema innovativo di monitoraggio, controllo e gestione (IoT) dei consumi di energia elettrica del sistema edificio-impianto.

Responsabile del Laboratorio di R&S (per il MIUR) e Socio/amministratore della società ANOVA Knowledge Based Software Solutions, fondata dallo stesso nel 1997 come “spin-off” dal Consorzio di Ricerca SESPIM (ALENIA Finmeccanica) per le applicazioni dell’Intelligenza Artificiale operante nell’ambito dei servizi alle imprese ad alto valore aggiunto. Tra le principali attività di R&S per lo sviluppo di progetti di innovazione ed esperienze professionali specifiche sulle tecnologie impresa 4.0, vengono riportati i seguenti:

  • (2021) Realizzazione della piattaforma software SWATER-saas (Smart WasteWater Treatments Modeling): “ecosistema software in cloud per la modellazione e simulazione dei processi di depurazione delle acque”. Trasformazione tecnologica di preesistenti modelli di simulazione dei processi di trattamento acque reflue (SWater, SWT) sviluppati  in ANOVA a partire dal 1998 e diffusi capillarmente in Italia e in parte all’estero.
  • (2016 – 2017) Incarico di Consulenza per conto di NATURA Srl di ammodernamento degli assetti gestionali ed organizzativi dell’impresa Progetto MSO (nuovo e più efficiente Modello di Sviluppo Organizzativo).
  • (2012 in corso) Incarico di consulenza e accordo di collaborazione con la società svizzera ENDRESS + HAUSER – leader globale nella fornitura di strumentazione di misura, servizi e soluzioni per l’ingegneria dei processi industriali – per lo sviluppo di applicativi software intelligenti da installare su dispositivi di automazione e controllo (Rif. Ing. Alberto Casiraghi).
  • (2008-2009) Incarico di consulenza per conto di ENDRESS+HAUSER GmbH+Co. KG, D-70839 Gerligen (in Germania), per la realizzazione di un dispositivo Hw/Sw intelligente web-based  (tipo Nodo Fog/IoT) per il monitoraggio ed il controllo di un processo sperimentale basato sull’utilizzo di sensori E+H (Rif. Manfred Jagiella).
  • (2009-2011) Incarico di consulenza per conto di ARETHUSA Srl (Rif. Cesare Ferone) per lo sviluppo del Progetto di Ricerca AMS “Autonomic Maintenance System” – Progetto e sviluppo di un Prototipo di Piattaforma Informatica SOA/Web per la Gestione Autonomica (ad Agenti Intelligenti), Integrata e Collaborativa della Manutenzione” – con l’Università di Napoli – Prof. E.Burattini – Misura 3.17 POR Campania.
  • (2004-2012) Incarichi per lo sviluppo e la gestione di una quindicina di progetti di R&S e innovazione per PMI industriali, nell’ambito delle agevolazioni MIUR Art.14 DM593/2000, tra cui le società: MECAL Srl, RITONNARO Costruzioni Srl, Gruppo Prima SpA, Zeta Consulting Srl, La MARRA Srl, Data ITC Srl.
  •  (2007–2010) Accordo di Collaborazione per la direzione tecnica della società olandese SENSORS INTELLIGENCE (Rif. Dr. Leo Hoekstra/ D3-Advies), con sede di Leeuwarden (NL), operante nelle applicazioni di sensori intelligenti software e nel controllo avanzato di processo (APC) con clienti olandesi tra cui la multinazionale FRIESLAND FOODS -sede di Beilen (NL), nonché per la realizzazione di Analisi Dati da processi Industriali.
  • (1998-2002) Incarico di consulenza per conto di IIASS (Istituto Internazionale per gli Alti Studi Scientifici – Vietri SA) per la realizzazione di un Laboratorio di Ricerca per la Sensoristica Intelligente – (Rif. Prof.ssa M. Marinaro).

Altri incarichi ANOVA per lo sviluppo e la gestione di progetti di innovazione basati su finanza agevolata:

  • Progetto Europeo BATTLE/ENEA (Progetto LIFE Ambiente) – Sviluppo di un Sistema ICT Real-Time di Gestione e Controllo del Recupero di Acque di Processo da una Industria Tessile – per conto di ENEA (piattaforma real-time Microsoft.NET/WDC). (Rif. Maurizio Casarci)
  • Sviluppo di un Sistema Informativo Esperto Distribuito – Progetto ENEA/TE.R.R.I. – come strumento di testing e di supporto per il trasferimento tecnologico -– su piattaforma Microsoft XBASE (Rif. Ferdinando Frenquellucci).
  • Progetto CyberPARK – Sviluppo di una Piattaforma Tecnologica ICT come Sistema Informativo e di Supporto alle Decisioni per il Monitoraggio Ambientale Integrato – per conto della Università di Foggia (BioAgromed); (piattaforma real-timeMicrosoft.NET/XBASE).
  • Progetto RECENT (IMI-MURST) – Realizzazione di un Sistema Informativo Esperto per il Recupero dei Centri Storici (piattaforma Microsoft VB/XBASE) – Diagnosi Stato Fessurativo – DSS Interventi (PST Salerno).
  • Progetto Europeo ELEN-Tool – Sviluppo di un Sistema Esperto per la Diagnosi e la Gestione del Processo di Fermentazione nell’Industria Vinicola – piattaforma real-time Microsoft XBASE.
  • Progetto di Ricerca Europeo INFOWATER “Integrated Expert System for waste water management efficiency control” – Programma SME 1999/1 “Promotion of Innovation and Encouragement of SME Participation” –  CRAFT-1999-70771- Progetto vincitore dell’Exploratory Award n°EXAW-1999-01473.
  • Progetto T.E.C.S.A.S. (MIUR) – Sviluppo di Tecnologie ICT Esperte per il Telecontrollo e la telesorveglianza dell’ambiente costruito strategico – Sviluppo di un Modelle Multicriteriale “Fuzzy MQC” – per conto del Centro ISIDE  Srl.

Giovanni Mappa

Indirizzo: Centro Direzionale, isola G1/c  (c/o ANOVA)  80143 NAPOLI (Italia)

Telefono: +39.348.3366137

Posta elettronica: ing.mappa@libero.it

Sito Webhttps://www.linkedin.com/in/giovanni-mappa-8b019521/

Documentazione di supporto

_____________________________________________________________

Corso di Perfezionamento universitario “Blockchain for professional and business services” dell’Università degli Studi di Napoli “Parthenope” – Dipartimento di Studi Aziendali ed Economici (DISAE). Anno Accademico 2019/2020 – Dipartimento di Studi Aziendali ed Economici (DISAE) dell’Università degli Studi di Napoli “Parthenope”.  

PROJECT & INFORMATION MANAGEMENT – Corso di Formazione Avanzato “Teoria e Pratica di Project and Information Management nel Campo dell’Ingegneria“.  OICE Academy

ResearchGateLinkedin

2014: Riconoscimento “Nella Valigia dei Talenti ″ all’ing. Giovanni Mappa  fondatore di ANOVA studi.com

Premio13-07-2014Riconoscimento “Nella Valigia dei Talenti ″ a cura dell’Ass. Agorà e Comune di Crispiano (TA) – consegnato all’Ing. Giovanni Mappa (Fondatore di ANOVA)  il 13 Luglio 2014 dall’Ing. Michele Vinci

big_Vinci Angelo MicheleAngelo Michele VINCI – Cavaliere del LavoroPresidente di Confindustria Bari-BAT

Short CV:

Laureato in Ingegneria nel 1985 presso il Politecnico di Bari e iscritto all’Ordine degli Ingegneri dal 1986. Vincitore di una borsa di studio in una selezione nazionale di neolaureati da inserire nell’ambito della Ricerca e Sviluppo e Innovazione Industriale (Finsider), presso il CSM (Centro Sperimentale Materiali) a Roma, per un periodo di circa un anno (1986).

     

My English Skills:

Giovanni Mappa has successfully completed the EF SET Certificate

Articoli specialistici:

    • “IL MATTINO” del 30 Ottobre 2010 – “Siamo i Meccanici della Conoscenza”: La sfida ANOVA – di Diletta Capissi.
    • “Il Sole 24 ORE”del 31 Maggio 2010: “La Ricerca Industriale che Produce Conoscenza Tangibile”.
    • “Il Denaro” del 25 Maggio 2010 – INNOVAZIONE  “Formo Operai della Conoscenza ”: Giovanni Mappa: da ricercatore a imprenditore segnalato da Il Sole 24 ORE – di Tania Sabatino
    • “CORRIERE della SERA” del 21 Dicembre 2009 – “ANOVA: il futuro non è il prolungamento del passato”
    • “Il Sole 24 ORE” del 2 Marzo 2009: Tecnologie ICT e Intelligenza Sensoriale “Catturare la Conoscenza per la Competitività: “Reti Cognitive di Monitoraggio e Controllo di Processo”
    • “Il Denaro” del 18 Ottobre 2008 – “On-Line  Color Index Detector” OCD – Algorithms and Software like X-ray aimed at innovative on-line computation of typical multidimensional features of colours in a single Index IC”
    • “Il Denaro” del 9 Febbraio 2008 –  “Innovative Knowledge Worker ” – A Researcher Training Course based on Knowledge Engineering organized by ANOVA to newly-graduated human resources. di Tania Sabatino
    •  “Il Denaro” dell’8 Dicembre 2007 – “Smart PILOT” – A Manager Microchip like a Decision Support System in Business Strategy in Action Control”. di Tania Sabatino
    •  “Il Denaro” dell’1 Febbraio 2007 “AIREXP” – Intelligent Monitoring System for industrial air toxic pollution- di Tania Sabatino.

Principali Pubblicazioni Scientifiche:

    • COMUNICAZIONE INTERDISCIPLINARE – Algoritmi di Comunicazione ProAttiva e Apprendimento Interdisciplinare – Giovanni Mappa – ed eBook – edit. Mnamon, 2018.
    • Modelli di Conoscenza come catalizzatori di efficienza cognitiva e strumento di sviluppo di sistemi decisionali: il caso BATTLE – Giovanni Mappa, Maurizio Casarci (ENEA-2014)
    • Il VALORE della CONOSCENZA nell’Era della Net Economy  – Giovanni Mappa (2013 Outsider News)
    • “INTERDISCIPLNARY THINKING BY KNOWLEDGE SYNTHESIS” – Algoritmi sullo Sviluppo della Interdisciplinarietà, del Buonsenso e del Valore, per le professioni emergenti – Giovanni Mappa IlMioLibro Editore (Settembre 2011- disp. su La Feltrinelli)
    • Capturing Knowledge in Real-Time ICT Systems to Boost Business Performance – Copyright©2009, AAAI – Association for the Advancement of Artificial Intelligence (aaai.org) – G.Mappa, N.Brancati
    • Mappa – “Expert Software tools for Unfailing Water Quality” – TNO Environmental, Energy and Process Innovation – Apeldoorn, 21th March, 2003.G.Mappa.
    • G.Mappa, R.Tagliaferri, D.Tortora – “On-line Monitoring based on Neural Fuzzy Techniques applied to existing hardware in Wastewater Treatment Plants” – AMSE-ISIS’97 – International Symposium on Intelligent Systems  – September 12, 1997.
    • G.Mappa – “Expert Software tools for Unfailing Water Quality” – TNO Environmental, Energy and Process Innovation – Apeldoorn, 21th March, 2003.G.Mappa –
    • G.Mappa, R.Tagliaferri, D.Tortora “On-line Monitoring based on Neural Fuzzy Techniques applied to existing hardware in Wastewater Treatment Plants” ADVANCES IN INTELLIGENT SYSTEM – IOS Press Ohmsha, 1997.
    • G. Mappa, et Alii (1996) – “Development of an Expert System for Nitrogen Removal Process Control” – EUROPEAN WATER POLLUTION CONTROL – EWPCA European Water Pollution Control – Volume 6, Numero 6, Novembre 1996, pagg.45-50.
    • G.Mappa – “Integrated Expert System for waste water management efficiency control” – Programma SME 1999/1 “Promotion of Innovation and Encouragement of SME Participation” –  CRAFT-1999-70771- Progetto vincitore dell’Exploratory Award n°EXAW-1999-01473- 1999
    • G.Mappa – “Distributed Intelligent Information System for Wastewater Management Efficiency Control” INFOWWATER- Wastewater Treatment Standards and Technologies to meet the Challenges of 21s t Century  4-7th April 2000 AD – Queen’s Hotel, Leeds, UK – 2000
    • G. Mappa, A. Sciarretta, S. Moroni e M. Allegretti (1993) “Sistema Esperto per la Gestione degli Impianti di Trattamento delle Acque Urbane” – Congresso Biennale ANDIS’93 – Palermo- 21-23 Settembre -Vol.II. – 1993
    • G.Mappa “Expert System for Identification of Filamentous Microorganisms Causing Bulking and Foaming in Activated Sludge System “- IAWQ e PROVINCIA di PERUGIA – Perugia 1995.
    • G.Mappa – “MICROexpert: un Sistema Esperto per il Controllo dei Problemi di Separazione Solido-Liquido nei Depuratori a Fanghi Attivi, basato sulle metodiche di indagine microscopica” – INGEGNERIA SANITARIA – Marzo 1995 .
    • G.Mappa -“Un Kit di Sensori ad Intelligenza Artificiale per il Telecontrollo Low-Cost degli Impianti di Depurazione delle Acque” – NEWS 2/95 -Endress+Hauser – 1995
    • G.Mappa, et Alii – “Sistema di monitoraggio e gestione del trattamento delle acque cromiche” – AI*IA99 – 6° Congresso della Associazione Italiana per l’Intelligenza Artificiale 7 Settembre 1999 – Facoltà di Ingegneria – BOLOGNA – 1999
    • G.Mappa, et Alii  – “On-line diagnostic system with intelligent software instrumentation based on neural fuzzy network” –  SMI’97 International Congress on Plant Maintenance – Instrumentation section – Fiera di Bologna, February 25, 1997.
    • G.Mappa, G.Salvi, R.Tagliaferri. “A Fuzzy Neural Network for the On-Line Detection of B.O.D.” –  Wirn Vietri ’95, VII Italian Workshop on Neural Nets ITALY. 1995.
    • Bonvicini,V., Indelicato, M., Mappa, G. “Sistema esperto per il Controllo dei Depuratori Biologici” – Convention ANIPLA Florence ITALY. 22 April 1997.
    • Bonvicini,V., Indelicato, M., Mappa, G. “Sistema Esperto per il Controllo dei Depuratori Biologici” – BIAS Automazione e Strumentazione No 9, pp. 119-125. September 1997.
    • Bonvicini,V., GHIANI, R., Mappa, G. “Approccio Globale con Sensoristica Intelligente nella Progettazione e Gestione degli Impianti” – Workshop Centro Studi Perugia ITALY. 28/29 May 1998.
    • Bonvicini, V., Mappa, G., Sabatino, P. “Monitoraggio della Qualità delle Acque Depurate con Sensori Intelligenti low-cost“ – WORKSHOP ’99 Artificial Intelligence for the Environment, Bologna ITALY. 17 September 1999.
    • Ghiani, R., Mappa, G. – “Sistema Esperto di Telecontrollo per il trattamento e Riutilizzo delle Acque Reflue” – WORKSHOP ’99 Artificial Intelligence for the Environment, Bologna ITALY. 17 September 1999.
    • Mappa, G., Sabatino, P. “Applicazione della sensoristica intelligente ‘INTESYSensors’ per il controllo on-line di un impianto di trattamento e affinamento di acque reflue in Sardegna” – Convention ANIPLA Automazione ’99 Roma ITALY. 24/25 November 1999.
    • O.Conio, V.Bonvicini, A.Carli, G.Mappa, et Alii – “ACQUE REFLUE URBANE – Sistemi Fognanti e Depurativi” – I processi, gli impianti e gli impatti – AMGA SpA – ECIG Editore – Genova 2002.
    • ATI 41° Congresso Nazionale – “Impianti a pompa di calore elioassistiti: modello di simulazione e verifica sperimentale su impianto pilota” – D.Laforgia, G.Mappa, V.Simi – Castel dell’Ovo –  Napoli, 23-26 Settembre 1986.
    • ATI  41° Congresso Nazionale – “Calcolo della radiazione solare globale su una superficie piana comunque inclinata: modello di previsione e verifica sperimentale” – D.Laforgia, G.Mappa  – Napoli, 23-26 Settembre 1986.
    • UNIVERSITA’ DI FIRENZE – Facoltà di Ingegneria – “Applicazioni Software in Campo Ambientale”; Intervento sul tema:” Sistemi di Monitoraggio Intelligente”; G. Mappa – Firenze, 17 aprile 1998.
    • CONVEGNO E+H sulla Strumentazione per la Gestione degli Acquedotti – Endress+Hauser – Napoli, 2 marzo 2000 – “Il Monitoraggio Consapevole nella gestione delle risorse idriche ” – José M. Schoorl, G.Mappa.
    • L’AMBIENTE – “Piattaforma Integrata di Sistema Esperto per il controllo in tempo reale dell’impianto di depurazione Darsena” di Genova” V. Bonvicini, M. Indelicato, G. Mappa, F. Guglielmi (1997) – Ranieri Editore, N.1 Gen.-Feb., 1997.
    • CENTRO STUDI DI PERUGIA – “La Gestione degli Impianti di Depurazione delle em for industrial Air PollutionAcque di Scarico: esperienze nazionali a Confronto” 28-29 Maggio 1998. Intervento sul tema:”Approccio Globale con Sensoristica Intelligente nella Progettazione e Gestione degli Impianti di Depurazione “- V. Bonvicini, R. Ghiani, G. Mappa , 1998.

Strumenti Logico-Matematici I.T.K.S. per la Gestione Interdisciplinare della Conoscenza, dell’Innovazione e dei Processi Decisionali

K http://www.h2biz.eu/scheda_prodotto.asp?prod=2079

Formazione e Trasferimento Tecnologico per l’acquisizione degli Strumenti Logico – Matematici dell’approccio interdisciplinare I.T.K.S. (Interdisciplinary Thinking by Knowledge Synthesis).

Si tratta di una metodologia che aiuta notevolmente a risolvere la complessità dei problemi professionali, attraverso il riconoscimento e/o l’utilizzo di “Modelli di Conoscenza”. Questi ultimi, possono essere assimilati a strutture canoniche di Conoscenza (esplicita o implicita), il cui riconoscimento appunto, consente di risolvere più rapidamente e facilmente, i vari “puzzle” che si incontrano generalmente nei processi di problem – solving e presa di decisione, nonché nell’ambito dello sviluppo dell’innovazione di processo.
La metodologia I.T.K.S. nasce agli inizi degli anni ’90 come “motore inferenziale” di sintesi logico – matematica ed è utilizzato per lo sviluppo informatico di Sistemi Esperti ES e di Supporto alle Decisioni DSS (Intelligenza Artificiale).
Dall’esperienza applicativa informatica e da quella relativa alla formazione del personale addetto, si è venuto a creare un vero e proprio approccio cognitivo interdisciplinare, trasferibile ai diversi profili professionali emergenti e “Knowledge Intensive”.
La vera innovazione nella metodologia I.T.K.S. risiede soprattutto nel concetto di “indipendenza della struttura della Conoscenza” dal contesto (lessicale) in cui si sviluppa, nonché nella possibilità di “modellare” con linguaggio universale logico – matematico “porzioni” di Conoscenza ricorrente con Modelli di diverso tipo, derivanti ad es. dalla esperienza popolare, fino alle leggi più rigorose della Fisica o dell’Economia, ecc. Detta possibilità, oltre a fornire l’indubbio vantaggio di riuscire a ”capitalizzare” la conoscenza, funge da catalizzatore nei processi cognitivi (sia umani che informatici), nel senso che consente di generare le conclusioni più valide nel minor tempo.
L’utilizzo applicativo dei Modelli di Conoscenza come già detto, ricopre una casistica molto ampia, fino allo sviluppo di sistemi on – line/real – time e di early – warning, nonché ove vi sia la necessità di prendere delle decisioni, in situazioni caratterizzate da elevata eterogeneità quantitativa e qualitativa dei dati come ad es., nei processi ambientali, nella gestione dei processi industriali e addirittura, nella valutazione di beni intangibili (ad es. il valore stesso della conoscenza).

Come Potenziare le proprie Capacità di Sintesi Cognitiva e Abilità Decisionali, senza ricorrere a Coach, Mentor o Guru?
________________________________
Per la frequentazione del Corso ITKS è preferibile possedere una base formativa scientifica anche scolastica (nell’ambito delle Scienze Matematiche, Fisiche e Naturali, ovvero nell’ambito delle Scienze Economiche e Statistiche).

Per Info:

Algoritmi sullo sviluppo della Interdisciplinarietà, del Buonsenso e del Valore

front  Interdisciplinary Thinking by Knowledge Synthesis

(2011) In un mercato del lavoro contraddittorio e imprevedibile come quello attuale, nel quale le professionalità “medie” (“colletti bianchi”) sono sempre meno richieste, a favore di un dicotomico interesse per la categoria degli artigiani (cuochi, panettieri, ecc.) da una parte, emergenti professionalità “Knowledge Intensive” dall’altra. Queste ultime, frutto della globalizzazione della conoscenza, sono caratterizzate da una crescente competitività in termini di flessibilità e interdisciplinarità. La sfida da affrontare è il lavoro che manca, perché per decenni si è puntato solo alla riduzione dei costi, piuttosto che alla creazione di valore ed eliminazione degli sprechi. La sfida da affrontare è il lavoro che cambia, sia in termini temporali, che in termini concettuali: se è cambiata la domanda, l’offerta dovrà necessariamente adeguarsi.

Non possiamo pretendere che le cose cambino, se continuiamo a fare sempre le stesse cose...” (A. Einstein).  Il presente lavoro intende contribuire a dare possibili risposte alle seguenti domande:

  • è possibile potenziare la propria professionalità, per capire ed adeguarsi al nuovo livello di competitività?
  • è possibile potenziare la propria capacità di elaborare e sintetizzare l’enorme volume di dati e informazioni, con le quali dobbiamo confrontarci ogni giorno?
  • è possibile sviluppare, in uno scenario di complessità lavorativa, il “buonsenso” nella presa di decisione e la capacità di creare nuovo “valore”?
  • è possibile fare tutto ciò in un tempo sostenibile (mesi e non anni)?

La soluzione proposta in questi libro di appunti è l’apprendimento del “ragionamento interdisciplinare” (v. http://www.conoscenzaefficiente.it) e la metodologia proposta, nelle sue linee essenziali, si basa sul concetto dell’esistenza una struttura comune e ricorrente della conoscenza (Knowledge’s Common Frame) che, con le sue proprietà e dinamiche evolutive, rappresenta la “chiave di volta” del nuovo approccio. Pur contenendo algoritmi di tipo matematico, il testo segue un filo logico discorsivo che lo rende adatto a lettori con un “background” non solo di tipo tecnico-scientifico, ma anche economico-gestionale e politico.

Il libro è scritto in un inglese tecnico, ma contiene note e commenti in Italiano. Due casi applicativi della metodologia, come l’Interdisciplinary Knowledge Worker e il K-commerce, sono riportati ad esempio.

Something old, something new, something better…,   perhaps something for you.

Sistema Esperto di Ottimizzazione a supporto degli Allevatori di Cavalli di Razza Araba

1-s2.0-S0888754305002491-gr2r1PratoPalazzoC1

Progetto per lo Sviluppo della Base di Conoscenza Informatica e realizzazione di un Sistema di Supporto alle Decisioni finalizzato alla salvaguardia, alla preservazione e al miglioramento delle caratteristiche genetiche morfo-funzionali dei Cavalli Purosangue di Razza Araba.

_______________________________________________________

Il cavallo arabo è una fra le razze equine tra le più antiche e utilizzate. È una razza a sangue caldo originaria della Penisola arabica, utilizzato per creare o per migliorare alcune razze, fra cui anche il purosangue inglese. Si tratta infatti, di un tipologia di cavalli dall’aspetto  molto nobile, dal busto fine, dalla pelle sottile ed elastica ricoperta da peli corti e lucenti. Gli zoccoli sono piccoli e durissimi; gli appiombi sono perfetti. Viene impiegato anche per creare o migliorare altre razze in ogni angolo della terra. Il tema della salvaguardia, della preservazione e del miglioramento genetico di questi animali, attraverso procedure che implicano una selezione consapevole e mirata delle specie, è quindi strettamente correlato al reddito economico degli allevatori, in quanto il mantenimento e l’evoluzione delle caratteristiche morfo-funzionali ottenute generazione per generazione, ne aumenta notevolmente il loro valore richiesto sul mercato.

Nel progetto di ricerca, la PRATO PALAZZO Srl, impresa che opera nel campo dell’allevamento di equini ed altre specie animali, intende verificare la possibilità di rendere più efficace ed economico il miglioramento genetico dei cavalli di razza araba.  A tale scopo, attraverso attività mirate di analisi e di ricerca, si intende sviluppare una “Base di Conoscenza” informatica, vale a dire non solo una elaborazione statistica di dati storici “a posteriori” (quindi inefficaci per la pianificazione ottimale degli accoppiamenti) su i criteri di selezione che hanno generato i migliori risultati, ma sulla base dell’utilizzazione di una computazione non-deterministica, per tener conto del patrimonio di conoscenza che risiede nell’esperienza degli stessi allevatori, soprattutto per quanto riguarda gli elementi distintivi a valore aggiunto.

PratoPalazzo RA3A tale scopo la società ANOVA Studi e Ricerche Interdisciplinari, sta realizzando un sistema basato su un “Modello di Conoscenza” (Sistema Esperto), in grado di inferenziare più efficacemente la valutazione del valore genetico delle singole fattrici e dei singoli degli stalloni rispetto ad Indicatori di Merito (Tipicità, Testa e Collo, Dorso e Armonia, Arti, Movimento, ecc.) oggi disponibili, con il fine ultimo di supportare la definizione ottimale di Piani di Accoppiamento più efficaci dal punto di vista dei risultati di selezione e più efficienti dal punto di vista dei tempi e dei costi. Il Modello si basa essenzialmente sullo sviluppo di un originale algoritmo inferenziale di valutazione e di confronto BAHMM (Best Arab Horse Matching Model), in grado di porre in relazione le possibili performance di accoppiamento tra una prefissata fattrice (con un determinato patrimonio genetico, grado di parentela, tipicità, condizioni di vita e ambientali) e una lista di possibili stalloni (ciascuno con le proprie caratteristiche di “riproduttore”, di patrimonio genetico, grado di parentela, tipicità, ecc.), rispetto ad un quadro di tipicità e caratteristiche di riferimento “target” di mercato (show, endurance, corsa, ecc.), che si intendono ottenere nella nuova generazione di puledri.

L’obiettivo finale del progetto è in ultima analisi, quello di realizzare uno strumento condivisibile fra gli allevatori di cavalli, in grado di supportare le scelte rispetto alla selezione e all’accoppiamento dei cavalli, riducendo i costi del 40% e aumentando contestualmente il “valore” dei puledri e quindi, la redditività dell’allevatore, in funzione delle specificità richieste dal mercato di destinazione.

Il primo prototipo di sistema BAHAMM è finalizzato a supportare il miglioramento delle tipicità e caratteristiche estetiche/morfologiche dei cavalli di razza araba destinati alla partecipazione ai vari “Show” tenuti in varie località dell’Italia e del mondo. Oggi, nessuna notevole razza equina è esente dall’impronta miglioratrice del cavallo arabo.

Esiste una organizzazione specifica di riferimento per il controllo di questa razza, la WAHO (World Arabian Horse Organization), per la quale migliaia di cavalli di puro sangue arabo nel mondo, vengono qui ogni anno registrati. Nelle gare di fondo il cavallo di razza araba non ha rivali grazie al suo metabolismo particolare. È nota inoltre la sua capacità di portare grossi carichi, fuori dai consueti rapporti peso trasportato/peso del cavallo, validi per tutte le altre razze.

L’arabo è famoso per la sua meravigliosa disponibilità, temperamento e bontà, stile e bellezza associate a facilità di apprendimento e serietà. Il libro genealogico del Cavallo di Purosangue Arabo è gestito in Italia dall’Associazione Nazionale Italiana Cavallo Arabo, ANICA, ai sensi dell’Art.3 della legge 15 gennaio 1991 n. 30, sulla disciplina della riproduzione animale. Si tratta di una associazione giuridicamente riconosciuta, ai sensi del DPR 10.2.2000 n.361, tramite iscrizione, dal 10/05/2001, al n. 1 del Registro Prefettizio delle Persone Giuridiche di Parma. Il libro genealogico è regolato da un apposito disciplinare, in armonia con la normativa dell’Unione Europea.