Innovation Manager in azienda (Knowledge Model)

“Gestire l’innovazione in una azienda, è fare in modo che quest’ultima possa esprimere il proprio business al meglio del “potenziale distintivo” e intraprendere la navigazione in “oceani blu”, dove è ancora possibile inventare il proprio futuro”.  (Giovanni Mappa, 2020)

Il Knowledge Model dell’Innovation Manager che opera all’interno di una azienda, si basa su diversi livelli operativi:

    1. sviluppo della cultura e della consapevolezza del cambiamento come fattore di benessere per le risorse coinvolte e per l’impresa;
    2. l’individuazione del dove siamo e come possiamo “distinguerci nel nostro mercato di riferimento (AS-IS);
    3. la definizione di strategie di breve-medio e lungo termine sostenibili per lo sviluppo del business così come lo “desideriamo”  (TO-BE);
    4. la definizione degli strumenti e delle tecnologie innovative che possono supportare tale sviluppo;
    5. il monitoraggio e adattamento continuo della rotta del business (v. Balanced Scorecard).

L’Innovation Manager ha innanzi tutto il ruolo del “facilitatore” dei processi che portano allo sviluppo dell’innovazione, nonché il ruolo del  “coach“, in relazione al “bilanciamento delle competenze e delle tecnologie innovative” di supporto.

 

TALENTI Interdisciplinari: “Interdisciplinary Learning” e “STEMamesimo”

Comunicazione Interdisciplinare –Metodologie e Algoritmi di Comunicazione Proattiva e Apprendimento Interdisciplinare

La “Comunicazione Interdisciplinare”  può essere definita come il binomio di due fattori sinergici: la comunicazione proattiva e l’apprendimento interdisciplinareSaper comunicare non significa essere necessariamente oratori, ma essere abili nell’arrivare agli interlocutori, nel superare le possibili barriere linguistiche o culturali, nel generare una partecipazione emotiva; ma ancora più importante, nell’ottenere il “risultato” auspicato: un contratto, un coinvolgimento, un riconoscimento, ecc.

Comunicare in maniera efficace è come rispettare le “partiture” di una composizione musicale: esiste la scelta delle note (parole) con la loro durata temporale, le pause, il ritmo, gli accordi, ecc.  Entrano in gioco diversi strumenti musicali (interlocutori), ciascuno con il proprio suono distintivo (altezza, timbro, intensità), ma che combinato a quello degli altri nel rispetto di opportune dinamiche e sintonie, fanno sì che la composizione musicale (risultato) risulti efficace e generi emozioni. Se è il pentagramma è il codice di riferimento (linguaggio comune) per tutti gli strumenti dell’orchestra, è il direttore d’orchestra (coordinatore interdisciplinare) a preparare (exAnte), a guidare verso il risultato e a verificare (exPost) il raggiungimento degli obiettivi e gli effetti emozionali prodotti. In analogia, in una riunione di lavoro dove possono essere presenti diversi interlocutori con differenti culture o competenze (ad es.: un medico, un ingegnere, un biologo e un amministrativo), che discutono su un tema “trasversale”, sarebbe molto difficile dialogare e soprattutto, trarre una sintesi conclusiva condivisa sulle azioni da intraprendere, se non ci fosse a farlo, almeno un coordinatore interdisciplinare (direttore d’orchestra) in grado di comprendere il linguaggio e le motivazioni di tutti, per convergere ad un risultato “win-win”.

 

 

 

 

Come nel caso del “direttore di orchestra”, che deve innanzi tutto “preparare” il concerto con i diversi componenti (azione exAnte proattiva), deve “condurre” (al risultato)  il concerto e deve “concluderlo” (ex-post) cercando di ottenere la risposta del pubblico, in questo libretto saranno trattate le “dinamiche” di cui si compone una comunicazione professionale efficace in contesti multidisciplinari e complessi (comunicazione interdisciplinare) e il “linguaggio comune” (interdisciplinare) che è possibile utilizzare “per comprendere e farsi comprendere”, basato su un originale e innovativo utilizzo di “modelli di conoscenza” e di “analogie concettuali”.

Si propone una “cassetta degli attrezzi”, ovvero un insieme di metodologie e strumenti per lo sviluppo individuale e di gruppo di una comunicazione professionale più funzionale ed efficace, in grado di rapportarsi con più discipline o “saperi”, per integrare i diversi “punti di vista” in una sintesi concettuale conclusiva, in grado di valorizzare ciò che “unisce” e di minimizzare ciò che “divide”.

La “Comunicazione Interdisciplinare”, favorendo il superamento delle barriere culturali e di linguaggio in scenari multiculturali o interdisciplinari, mira soprattutto al raggiungimento di specifici obiettivi.

 

Ricerca & Sviluppo e Innovazione nelle Imprese

Attività/Servizi

ANOVAstudi svolge da oltre 20 anni, attività di consulenza nell’ambito dei progetti di Ricerca & Sviluppo e dei processi di Innovazione (RSI) nelle imprese. Si occupa prevalentemente di studiare e analizzare le esigenze funzionali o di innovazione nell’ambito di processi/soluzioni/prodotti, dall’idea/concept, alla prototipazione, alla gestione e protezione dei diritti di proprietà intellettuale, fino alla fase di ingegnerizzazione e commercializzazione.

In particolare, le Attività/Servizi si riferiscono alle seguenti principali

    • Ricerca Industriale  e Sviluppo Sperimentale (RI/SS)
    • Innovation Management e R&D Project Management
    • Valorizzazione della Proprietà Intellettuale (IPR)
    • Individuazione e Formazione di “Talenti Interdisciplinari(Interdisciplinary Talent Factory).
    • Knowledge Broker e sviluppo di Modelli di Conoscenza Competitiva;
    • Technology Broker (Meccatronica, Intelligenza Artificiale, ICT, IoT, Automazione, Sensoristica, ecc.);
    • Analisi Strategica di Opportunità di Business;

Le Aree Operative  di maggiore interesse sono qui di seguito elencate:

 

 

Skill Interdisciplinare

Agilità Mentale & Approccio Interdisciplinare  per gli operatori della R&S e dell’Innovazione nelle MPMI

 

Parafrasando la famosa frase di Mark TwainLa vita sarebbe infinitamente più felice se nascessimo a 80 anni e gradualmente ci avvicinassimo ai 18” – si potrebbe dire che: avremmo molti più vantaggi profittevoli se potessimo operare da subito con l’esperienza lavorativa che ci ritroveremo poi, ad una certa età, quando però questa non servirebbe più a molto….

Esistono strumenti mentali (es. KWI  – Knowledge Working Interdisciplinare)  che rappresentano una sfida per poter controvertere l’utopia di Mark Twain, fornendo la possibilità di anticipare ad “oggi” la “Conoscenza e il Know-How” di “poi”, con gli indubbi e innumerevoli vantaggi e profitti che ne deriverebbero.

ANOVA studi  offre servizi di  Formazione di Skill Interdisciplinari (Business Interdisciplinary Skills) nell’ambito delle nuove figure professionali e manageriali  richieste dalle imprese della Nuova Rivoluzione Industriale (NPR).

 

Algoritmi di Comunicazione Proattiva e Apprendimento Interdisciplinare
COMUNICAZIONE INTERDISCIPLINARE
COMUNICAZIONE INTERDISCIPLINARE – Algoritmi di Comunicazione ProAttiva e Apprendimento Interdisciplinare

Breve trailer del libro di Giovanni Mappa, ingegnere, esperto internazionalmente riconosciuto di problemi legati alla gestione aziendale, all’innovazione, alla comunicazione. Si mette in luce l’interdisciplinarità che contraddistingue la nostra epoca, dalla quale non può prescindere chi fa del comunicare l’essenza del proprio lavoro: manager, giornalisti, politici, commentatori, ecc… Un libro da leggere, meditare, studiare. (Mnamon, 12/2018)

 

frontINTERDISCIPLINARY  THINKING by Knowledge Synthesis (ITKS) Il libro intende dare una risposta alle seguenti domande:

  • E’ possibile potenziare la propria professionalità per capire ed adeguarsi al crescente livello di competitività?
  • E’ possibile potenziare la propria capacità di elaborare e sintetizzare l’enorme volume di dati e informazioni, con le quali dobbiamo confrontarci ogni giorno?
  • E’ possibile sviluppare, in uno scenario di complessità lavorativa, il “buonsenso” nella presa di decisione e la capacità di creare nuovo “valore”?
  • E’ possibile fare tutto ciò in un tempo sostenibile (mesi e non anni)?

La soluzione proposta in questi libro di appunti è l’apprendimento del “ragionamento interdisciplinare”  (Interdisciplinary Thinking) e la metodologia proposta, nelle sue linee essenziali, si basa sul concetto dell’esistenza una struttura comune e ricorrente della conoscenza (Knowledge’s Common Frame) che, con le sue proprietà e dinamiche evolutive, rappresenta la “chiave di volta” del nuovo approccio.

__________________________________________________________

 

 

Approccio Interdisciplinare ed Agilità Mentale

Interdisciplinarità

Il concetto di  “interdisciplinarità” esprime naturalmente e semplicemente la “realtà” come “punto di incontro” di differenti punti di  osservazione (disciplinari). In particolare, le discipline tecnico-scientifiche (fisica, matematica, geometria, ecc.) sono state create artificiosamente (come “complesso specifico di conoscenze avente caratteristiche proprie sul piano dei concetti, dei meccanismi, dei metodi, dei linguaggi”) dall’uomo per facilitarne l’insegnamento e l’apprendimento.

La scienza è una creazione dell’intelletto umano, con le sue libere invenzioni di idee e di concetti. Le teorie fisiche tentano di costruire una rappresentazione della realtà e di determinare i legami con il vasto mondo delle impressioni sensibili” (A. Einstein).

È evidente, però, che la “realtà” oggi, in piena  4° rivoluzione industriale,  è molto diversa dalla quella rappresentata nel passato. Sono pertanto notevolmente aumentati i punti di vista disciplinari che hanno studiato i molteplici aspetti della realtà in maniera sempre più analitica (sono nate nuove discipline e si sono scoperte interrelazioni, un tempo impensabili, tra discipline molto lontane tra di loro). Nella ricerca scientifica, però, accanto alla sempre più accentuata diffusione dei settori specialistici, è emersa contemporaneamente l’esigenza di comunicare e di integrare i diversi campi del sapere al fine di avere una visione unitaria e comprensiva dei problemi analizzati dai molteplici punti di vista specialistici. Il “sapere” contemporaneo si presenta fortemente specializzato e la specializzazione ha rappresentato e rappresenta tuttora la condizione indispensabile per far progredire in ogni campo la conoscenza umana.

Si è cominciata a sentire, cioè, l’esigenza di ricomporre la totalità delle conoscenze analitiche e di riconquistare nella interdisciplinarità quell’unitarietà del sapere che è l’unica forma capace di soddisfare l’esigenza di comprensione della realtà nella sua totalità. 

(da “Interdisciplinarità: convergenza dei saperi sull’uomo e per l’uomo”  di Anna Maria Barone)

La interdisciplinarità (interdisciplinary) descrive quindi, l’interazione tra due o più discipline differenti. Questa interazione può variare da semplice comunicazione di idee a integrazione reciproca di concetti organizzatori, metodologie, procedure, epistemologie, terminologie, dati che guidano verso un’organizzazione della ricerca e dell’educazione in un campo abbastanza esteso

Approccio Interdisciplinare

Il contributo di una o più discipline allo studio di un problema o di un oggetto si può posizionare in continuità con il grado di interazione o fusione di queste discipline, dalla “mono-disciplinarità” alla “trans-disciplinarità  (Bernard Terrisse, 1997)

L’approccio interdisciplinare richiede una capacità di sintesi unificate tra punti di vista differenti rispetto un medesimo argomento o problema.

A questo proposito, si tratta di acquisire uno specifico “skill” che consenta, ascoltando i diversi interlocutori “disciplinari”,  di coglierne i diversi aspetti unificanti, estrapolandoli dal particolare tipo di linguaggio (glossario) utilizzato da ciascuno: “Valorizzare ciò che unisce e minimizzare ciò che divide”.

Il primo problema è il “linguaggio comune” per comprendere e farsi comprendere”. Ad es.: “un matematico, un biologo e un fisico sono seduti in un bar di strada a guardare le persone che entrano e escono da una casa dall’altra parte della strada”. Per prima cosa vedono entrare due persone in casa. Il tempo passa. Dopo un po’ notano che escono tre persone. Il fisico dice: “La misurazione non era accurata”. Il biologo dice: “Si sono riprodotti“. Il matematico dice: “Se ora una singola persona entra nella casa, allora  questa sarà di nuovo vuota“.  Ogni disciplina ha il suo gergo, che può portare a fraintendimenti, anche quando le persone parlano effettivamente della stessa cosa. Inoltre, sempre più spesso ci si trova ad affrontare anche il divario generazionale rispetto a coetanei tradizionalmente formati.

Il secondo problema è l’“apprendimento interdisciplinare  come risultato di un processo mirato allo sviluppo di una Conoscenza Interdisciplinare, in grado di sostenere la comprensione delle diverse possibili situazioni comunicative complesse o multidisciplinari.  Non si tratta di diventare “tuttologi”, ma di utilizzare un percorso di apprendimento basato su utilizzo di modelli di sintesi concettuali trasversali e analogie ispirate ad es. alle Scienze naturali, ovvero alla Biomimetica (trasferimento di processi dal mondo naturale a quello artificiale mimando” i meccanismi che governano la natura: l’uomo può infatti trovare la soluzione ad innumerevoli problemi), in grado di fornire un supporto alla condivisione di concetti e valori.

“Agilità Mentale” come risultato dell’Approccio Interdisciplinare

L’agilità mentale semplifica la vita. Come si vede che c’è l’agilità mentale? Ci sono molte abilità che la rivelano:

    • saper assumere la visione dalla prospettiva di altre persone
    • sognare tante nuove possibilità
    • riuscire a trovare nuovi stratagemmi
    • saper rispondere prontamente e velocemente
    • riuscire a intravedere le opportunità
    • saper far fronte all’imprevisto
    • saper uscire dalla propria mappa mentale, magari evitando di fermarsi alla conclusione sbagliata o di restare intrappolati nelle logiche di causa-effetto

Un esercizio per allenare l'agilità mentale

Il cervello: se lo coltivi funziona. Se lo lasci andare e lo metti in pensione si indebolisce. La sua plasticità è formidabile. Per questo bisogna continuare a pensare”  (Rita Levi Montalcini)

Sviluppare una “Conoscenza Efficiente” con i Modelli di Conoscenza (ITKS)

Modelli di Conoscenza come Catalizzatori di Efficienza Cognitiva e Strumento di Sviluppo di Sistemi Decisionali

_____________________________________________________________________________________________

I Modelli di Conoscenza e il loro utilizzo: per definire in maniera esaustiva il concetto di Modello di Conoscenza (Knowledge Model)  bisognerebbe addentrarsi nei meandri delle Scienze Cognitive; per constatarne invece la loro utilità operativa e applicabilità pratica, l’ambito di riferimento è l’Ingegneria della Conoscenza: su questi argomenti esiste infatti un immenso patrimonio di letteratura tecnico-scientifica, a partire addirittura dagli anni ’50. In termini generali, può essere sufficiente affermare come un Modello di Conoscenza sia un algoritmo di “sintesi logico-matematica” in grado di elaborare (inferenziare) una moltitudine di dati/informazioni acquisiti come input da fonti esterne eterogenee, per restituire come output informazioni decisionali rispetto ad un target  prefissato.

In questo contesto, si intende mettere in evidenza come i modelli di conoscenza siano già a noi familiari da tempo e addirittura insiti nella nostra natura di esseri viventi in grado di osservare quanto ci circonda, interpretare tempestivamente gli eventi, gestire le incertezze e prendere delle decisioni di buon senso. Infatti, tutti noi seguiamo dei modelli di riferimento che possono riguardare l’etica, la famiglia, la politica, ecc., come insieme di regole e valori condivisi e collaudati. Esempi tipici di modelli di conoscenza si ritrovano addirittura negli aforismi o nei proverbi, nati dall’esperienza e dalla saggezza popolare: ci aiutano in qualche modo a riflettere e a metterci in allerta (early warning) di fronte ad eventi di pertinenza.

Peraltro, nell’era in cui viviamo dell’Economia della Conoscenza e della ricerca dello sviluppo sostenibile, ciò si tradurrebbe da un lato, nella necessità di gestire la conoscenza secondo principi “tangibili” di economia, introducendo strumenti di misurazione del valore della conoscenza e dall’altro sviluppando un approccio sistematico e interdisciplinare alla risoluzione dei problemi. Tutto ciò si traduce nella necessità di gestire la conoscenza in maniera efficiente, ovvero in maniera tale da raggiungere gli obiettivi nel minor tempo e con la massima economicità, mentre ora sappiamo farlo già in maniera efficace e stiamo ancora imparando a farlo in maniera economica: Net-Economy, Big-Data, Green Energy, Smart City  sono solo alcuni dei possibili contesti che ci richiamano il concetto di conoscenza efficiente [22][23][24][25]. I Modelli di Conoscenza ci aiutano a questo scopo: sono dei “Knowledge Pattern”, sintesi di regole già note o rese tali da opportuni procedimenti di estrazione di conoscenza (Data Mining /Knowledge Extraction), che forniscono le chiavi di lettura della complessità trasformandola in un sistema di knowledge pattern più semplici e sintetici. In altri termini, i modelli di conoscenza fungono da “scorciatoia” o da catalizzatori  nei processi cognitivi per aumentarne l’efficienza. L’approccio dei Modelli di Conoscenza è stata presentato ufficialmente dall’autore della presente memoria per la prima volta nel 1993 a Palermo, in occasione del Congresso ANDIS, come sviluppo di un Sistema Esperto per la gestione dei processi biologici di depurazione delle acque, dimostrando come fosse possibile prevenire le anomalie di processo, incrociando i dati chimico-fisici di processo con le informazioni quali-quantitative relative al comportamento biologico (non-deterministico) dei microorganismi depurativi.

Un modello di conoscenza non è necessariamente qualcosa di complicato, anzi può essere molto semplice, ad esempio se consideriamo la seguente espressione del Valore di un prodotto/servizio:

Ke1

 Se un prodotto/servizio fornisce le funzionalità f1+f2+f3, il costo di produzione corrispondente sarà c1+c2+c3 e pertanto:

  • se si sbaglia a fornire una o più funzionalità fi perché non corrispondente a quanto richiesto o perché non necessaria, si avrà comunque un costo corrispondente ci e quindi, il Valore Vp sarà inferiore al dovuto: ciò esprime il concetto di Qualità del Prodotto/Servizio;
  • se a parità di fi, riduco i costi ci dislocando l’azienda in paesi dell’estero ove è possibile farlo o acquistando materie prime più economiche il Valore Vp aumenta (virtualmente), ma dal momento che ci (al denominatore) può al limite tendere a zero, dopo di che il prodotto/servizio è perso inevitabilmente: ciò esprime il concetto di una Visione (suicida) di Cash-Flow di breve periodo del Prodotto/Servizio;
  • solo migliorando e incrementando le fi, ovvero investendo in ricerca e innovazione si ha che il Valore si incrementa realmente (al limite all’infinito) ed è in grado di competere sul mercato: ciò esprime il concetto di una Visione (imprenditoriale) di medio-lungo periodo del Prodotto/Servizio;

Come è facile constatare, un semplice rapporto come quello sopraindicato  esprime da solo, un modello di conoscenza che se fosse stato utilizzato dalla politica economica degli ultimi vent’anni, l’Italia oggi si troverebbe a competere con un rafforzato  Made in Italy senza la necessità di svendere le aziende italiane e il patrimonio nazionale [7].

Concetti e Principi Base:Modelli di Conoscenza (Knowledge Models) sono quindi algoritmi che utilizzano il “linguaggio universale” della matematica per sviluppare in maniera quali-quantitativa sintesi di regole, di concetti e di scenari. Entrando più nel merito dell’argomento, è possibile enucleare alcuni concetti sui quali si basa applicazione della metodologia. Risulta necessario infatti definire alcuni punti chiave:

a) Catena della Conoscenza: si tratta del primo principio sul quale si basa la struttura dei modelli di conoscenza, ovvero quello relativo alla Knowledge Chain DIKW (Data/Info/Knowledge/Wisdom), nella quale si distinguono i dati dalle informazioni e queste ultime dalla conoscenza, fino ad arrivare al concetto di saggezza. I dati sono definibili come entità statiche, “fotografie” di fatti e sono quindi espliciti, in genere sono espressi in forma alfanumerica, prodotti da fonti (database, sensori,…) che ne condizionano poi la loro “qualità”.  Le informazioni sono entità dinamiche ed evolutive, caratterizzate da un proprio ciclo di vita, nascono in forma esplicita o latente, sono correlate ad uno o più processi (mentali, personali, ambientali, produttivi, ecc.) ed esercitano su tali processi una propria influenza (o “peso”).  Ad esempio: misurando la temperatura, la pressione atmosferica e l’umidità relativa esterna (dati), si ottiene un’informazione che può essere correlata all’abbigliamento da indossare (processo), condizionata dal “peso” che la stessa informazione ha su una determinata persona piuttosto che su un’altra e dura lo spazio temporale (ciclo di vita) limitato alla rispettive necessità di uscire da casa.

Ke2

Fig.1 – La Catena della Conoscenza DIKW

La catena della conoscenza  DIKW non è solo un legame funzionale, ma esprime anche una azione: “ La conoscenza è informazione in azione“[21]. Con riferimento al DIKW e alle precedenti considerazioni, si potrebbe quindi definire la conoscenza come la facoltà umana risultante dall’interpretazione delle informazioni finalizzata all’azione (Knowledge in Action), ovvero il risultato di un processo di inferenza e di sintesi (ragionamento), a partire da dati verso la saggezza (come ulteriore livello di astrazione dalla conoscenza acquisita).

b)  Indipendenza Strutturale della Conoscenza dal contesto di riferimento: il principio base più innovativo è senza dubbio quello che esprime l’indipendenza della conoscenza dalla struttura lessicale e dal particolare glossario dei termini utilizzato: la struttura della conoscenza non è legata al peculiare ambito applicativo, ovvero: i processi di ragionamento fautori di conoscenza non sonofigli unici di madre vedova”, ma seguono dinamiche trasversali e interdisciplinari che sono ripetitive secondo classi tipologiche che fanno parte di un sistema inerziale nel quale valgono universalmente i principi base della Natura e dell’uomo (v. Piramide dei Bisogni Primari di A.Maslow [20]), a prescindere dagli scenari tecnologici, politici e di mercato del momento. Un esempio per tutti di indipendenza strutturale della conoscenza: l’Ingegneria Biomedica è nata quando finalmente discipline diverse dal punto di vista lessicale e dei contenuti, come la medicina, la fisica, l’ingegneria, la biologia, ecc., si sono incontrate “interdisciplinarmente” nel suddetto sistema di riferimento inerziale, al fine di soddisfare un bene primario come quello della salute.  L’esistenza di una struttura comune della conoscenza consente un’interazione più facile con nuove aree di conoscenza e favorisce lo sviluppo dell’approccio di ragionamento interdisciplinare o “Interdisciplinary Thinking” [7], in quanto anche trovandosi in un contesto nuovo di conoscenza, è possibile riconoscere la struttura (comune) di ragionamento di riferimento e adattarsi velocemente allo specifico lessico e al glossario dei termini utilizzato e infine, essere in brevissimo tempo pro-attivi fornendo il proprio contributo cognitivo.

c)  Propagazione del Grado di Certezza (vs Probabilità): altro principio fondamentale e distintivo dei modelli di conoscenza rispetto ad esempio, all’approccio statistico e probabilistico utilizzato normalmente nello sviluppo di strumenti inferenziali complessi come le ”Reti Bayesiane”, è che nella realtà  industriale (e non solo) è poco frequente disporre di dati sufficientemente numerosi ed affidabili, nonché rappresentativi di un prefissato fenomeno in esame. Spesso viene confusa ad es. l’esistenza di un fenomeno con la frequenza con cui esso appare, fino a commettere l’errore di negarne l’esistenza soltanto perché “poco probabile”: è superfluo sottolineare come le catastrofi che puntualmente si verificano (in Italia e nel mondo) in occasione di ogni evento naturale “anomalo”, siano anche frutto di valutazioni a bassa probabilità… I modelli di conoscenza operano sulla propagazione della certezza, la quale si basa sul seguente concetto: se due o più informazioni input hanno un contenuto informativo inferenziale, eventualmente anche parziale o incerto a favore di una certa conclusione output, quest’ultima, frutto dell’intersezione ”insiemistica “ delle prime due, acquisirà un grado di certezza maggiore di quello contenuto in ciascuna delle informazioni di origine.

d) Computazione Non-Deterministica: i Modelli Matematici possono essere considerati come un particolare sottoinsieme dei Modelli di Conoscenza, ma mentre nei primi si rappresenta la realtà dei fenomeni secondo procedimenti  deterministici e subordinata in genere a delle ipotesi iniziali semplificative, nei modelli di conoscenza la realtà è rappresentata anche nella propria natura non-deterministica, attraverso un approccio sistemico e procedimenti che tengono conto della “naturale” incertezza nei dati e nelle informazioni, rispetto alla minimizzazione degli errori e alla ricerca di soluzioni di “buon senso” (common sense).  Poniamoci infatti, la seguente domanda: nel ragionare e prendere ad es. una decisione, il nostro cervello risolve un sistema di equazioni o risolve per caso un’espressione algebrica? Certo che no. Allora forse c’è un “gap” tra quello che ci hanno insegnato a scuola nell’ambito delle computazione di dati (v. Matematica) e il modo “naturale” di computare informazioni proprie del nostro cervello e poi trasferito alle macchine (v. Intelligenza Artificiale). La computazione non deterministica ci consente di fare operazioni con le informazioni quali-quantitative anziché con i dati, ovvero  con il contenuto informativo che i dati possono o meno esprimere. Un dato può essere considerato come un “insieme” che ha un contenuto informativo percentualmente differente a seconda del contesto e del target a cui è destinato. Ritornando all’esempio precedente sulle condizioni atmosferiche, un valore di temperatura dell’aria esterna di 15 °C rispetto alla scelta di vestirsi in maniera adeguata per uscire di casa fornisce una indicazione decisionale solo parziale (% certezza), se non è sovrapposta alle altre informazioni come ad es. la pressione atmosferica e l’umidità relativa. L’insieme risultante dall’intersezione dei tre insiemi di partenza ottenibile rispetto ad un target di “tempo di pioggia” o di “tempo soleggiato”, fornisce un valore % risultante di certezza più elevato rispetto a quello che ciascun dato di partenza può esprimere singolarmente: se consideriamo che la temperatura di 15°C rispetto al target “meteo-pioggia”, contribuisce per il 30%, mentre la pressione atmosferica per il 25% e l’umidità relativa per il 35%, si avrebbe che la decisione di vestirsi in un certo modo piuttosto che in un altro avrebbe un grado di certezza complessivo del 65,875% (somma insiemistica), che è superiore al 50% di soglia, anche se con ancora un 34,125% di % incertezza che potrebbe essere soddisfatto da un’altra “intersezione insiemistica” fornito da un ulteriore dato (ad es. dal valore della velocità del vento). Alle stesse conclusioni si potrebbe arrivare con dati differenti (v. es. millimetri di pioggia), sia in termini di contenuto informativo che  numerici.

e) Modellazione Reticolare della Conoscenza: dal punto di vista logico, ogni modello di conoscenza è rappresentabile da una “cella informativa base” dotata di “n” dati/info in ingresso (input) e “m” meta-informazioni in output: all’interno della cella è possibile avere differenti relazioni di inferenza input/output: dalla semplice inferenza XY (curva di conoscenza n=1, m=1), fino a intere matrici “n*m” inferenziali. Gli “m” output di una cella possono a loro volta diventare in parte o in toto, input per un’altra cella e così via fino a realizzare una rete di celle in grado di elaborare un numero teoricamente infinito di informazioni.

Un processo tipico di “modellazione” della conoscenza, soprattutto nella realizzazione di sistemi on-line di controllo, segue alcuni passi fondamentali come la formalizzazione e validazione dei dati acquisiti da sorgenti eterogenee esterne, la normalizzazione rispetto ai range di operatività, l’inferenziazione di cross-matching (inferentation-integration-data fusion),  la de-normalizzazione dei risultati target ottenuti (v. Fig.2).Ke3

Fig.2 -Processo tipico di Modellizzazione della Conoscenza (Knowledge in Action)

Dal punto di vista concettuale [7], questo processo di modellazione della conoscenza è raffigurabile anche come una rete neurale artificiale costituita da “nodi” (neuroni) come unità base di elaborazione delle informazioni (Basic-Info) e “collegamenti” (sinapsi) come adduttori di inferenza caratterizzata da un grado di certezza (“peso” dinamico non probabilistico).

Grado di innovazione rispetto allo “Stato dell’Arte”: il grado di innovazione di questa metodologia rispetto allo “Stato dell’Arte”, risiede essenzialmente nei seguenti punti:

  1. rispetto alle Reti Neurali Artificiali (ANN) ogni nodo-neurone i-esimo è in grado di elaborare dinamicamente un numero elevato di input/output (multidimensionalità inferenziale), anziché un solo input/output con un’unica (e spesso statica), funzione di inferenza (attivazione);
  2. l’elaborazione inferenziale all’interno di ciascun nodo ha un adattamento continuo (apprendimento), ma rimane sempre “visibile”: è possibile in ogni momento ispezionare la configurazione di ciascun nodo della rete e dei relativi collegamenti-sinapsi, per cui il processo cognitivo è sempre tracciabile (cosa in genere non possibile nelle ANN);
  3. rispetto ai  procedimenti statistico-probabilistici ed in particolare alle Reti Bayesiane, i Modelli di Conoscenza operano sul grado di certezza dei contenuti informativi, secondo un processo incrementale che ne riduce progressivamente l’errore, ottimizzando realisticamente il valore del processo cognitivo: ciò cambia totalmente il punto di vista rispetto al problema della disponibilità di dati storici e dei campioni statisticamente significativi, essendo in grado di utilizzare tutte le informazioni quantitative, qualitative o anche incerte di cui si è a disposizione, giungendo sempre ad una conclusione, con un livello di qualità ovviamente inversamente proporzionale alla stessa qualità degli input.

Campi di Applicazione: l’utilizzo di questi Modelli di Conoscenza offre diverse possibilità, con riferimento sia ai sistemi on-line/real-time e di Early-Warning (EWS), sia ove vi sia la necessità di supportare la diagnostica e la presa di decisione, particolarmente in situazioni caratterizzate da interdisciplinarietà, eterogeneità quantitativa e qualitativa dei dati, come ad es., nei processi ambientali, nella gestione dei processi industriali  e addirittura, nella valutazione di beni intangibili come ad es. il valore della conoscenza stessa.

Lo spettro di azione dello sviluppo dei modelli di conoscenza è comunque molto ampio: a partire dai casi  più semplici (2D) nei quali i modelli di riferimento (in questo caso “Curve di Conoscenza”) sono già noti ed esplici,  ovvero i modelli sono  impliciti e derivanti dall’elaborazione dati storici e dall’esperienza, fino a casi più complessi nei quali si hanno moltissime informazioni quanti-qualitativamente eterogenee derivanti da differenti sorgenti di dati (v. Big-Data), dove è necessario lo sviluppo di modelli di conoscenza del tipo Rete Neurali a Neuroni Esperti (v. Fig.2  XBASE tool, ANOVA).

Ke4

Fig.3 -Processo tipico di Modellizzazione della Conoscenza (ANOVA XBASE tool – Fig. da ENEA/BATTLE)

Le esperienze applicative dei modelli di conoscenza sviluppate dallo scrivente dal 1993 ad oggi, riguardano soprattutto l’ambito dei Sistemi Esperti di Supporto alle Decisioni, dei Sistemi on-line/real-time di Monitoraggio “Consapevole” e dei Sensori Software Intelligenti. In particolare, sono stati realizzati sistemi per:

  • la rilevazione early-warning del rischio/credito;
  • per il recupero di centri storici post-sisma;
  • sistemi di controllo processo in ambito alimentare (mosto/vino, olio d’oliva EV, caseario),
  • il monitoraggio on-line  della qualità delle acque e del loro trattamento depurativo;
  • il controllo early-warning degli Incendi boschivi e della salvaguardia ambientale;
  • il monitoraggio early-warning degli odori molesti da impianti di trattamento rifiuti;
  • il controllo energy saving di processi biologici;
  • la gestione early-warning/predittiva della manutenzione di impianti industriali;
  • diversi studi fattibilità operativa.

Note conclusivesi è presentata una metodologia sperimentata da parte dell’autore oramai nell’arco di un ventennio e che, nata per sviluppare sistemi basati sulla conoscenza (Knowledge Based System) e sistemi esperti di controllo, ha consentito una generalizzazione dell’approccio mentale rivelatasi molto utile nei processi decisionali. L’esperienza applicativa ha infatti mostrato la possibilità di considerare questa metodologia, oltre che uno strumento per rendere più performanti i sistemi informatici e di controllo automatico, anche come una  vera e propria nuova “forma mentis” che consente di gestire la conoscenza in maniera interdisciplinare ed efficiente (Interdisciplinary Thinking)[7].

Conoscere per competere perché il futuro non è il prolungamento del passato…[7]

Bibliografia

  • [1] Kendal, S.L.; Creen, M. (2007), An introduction to knowledge engineering, London: Springer, ISBN  9781846284755, OCLC 70987401
  • [2] Jackson, Peter (1998), Introduction To Expert Systems (3 ed.), Addison Wesley, p. 2, ISBN 978-0-201-87686-4
  • [3] Mohsen Kahani – “Expert System & Knowledge Engineering in Wikipedia” (2012)
  • http://fumblog.um.ac.ir/gallery/435/Expert_System_Knowledge_Engineering_in_Wikipedia.pdf
  • [4] Pejman Makhfi – “Introduction to Knowledge Modeling” (2013) –  http://www.makhfi.com/KCM_intro.htm#What
  • [5] Luca Console “Problem Solving Diagnostico: Evoluzione e Stato dell’Arte” – Dipartimento di Informatica – Università di Torino – AI*IA Notizie – Anno X n°3 Settembre 1997.
  • [6] L. Console, P. Torasso: “Diagnostic Problem Solving: Combining Heuristic, Approximate and Causal Reasoning”, Van Nostrand Reinhold, 1989.
  • [7] Giovanni Mappa “Interdisciplinary Thinking by Knowledge Sysnthesis” – IlMioLibro Editore (2011). http://ilmiolibro.kataweb.it/schedalibro.asp?id=647468
  • [8] N. Brancati, G. Mappa (2009) “Capturing Knowledge in Real-Time ICT Systems to Boost Business Performance” ANOVA – Cognitive and Metacognitive Educational Systems: Papers from the AAAI Fall Symposium (FS-09-02)
  • [9] Henrion, M. (1987). “Uncertainty in Artificial Intelligence: Is probability epistemologically and heuristically adequate?” In Mumpower, J., editor, Expert Judgment and Expert Systems, pages 105–130. Springer-Verlag, Berlin, Heidelberg.
  • [10] G.Mappa ‐ “Distributed Intelligent Information System for Wastewater Management Efficiency Control” INFOWWATER‐ Wastewater Treatment Standards and Technologies to meet the Challenges of 21s t Century 4‐ 7th April 2000 AD – Queen’s Hotel, Leeds, UK ‐ 2000
  • [11] G.Mappa, et Alii ‐ “Sistema di monitoraggio e gestione del trattamento delle acque cromiche” ‐ AI*IA99 – 6° Congresso della Associazione Italiana per l’Intelligenza Artificiale 7 Settembre 1999 ‐ Facoltà di Ingegneria– BOLOGNA ‐ 1999
  • [12] EDILMED ‐ Convegno “Tecnologie Post‐Industriali trasferibili all’Architettura e all’Edilizia” ‐ Mostra d’Oltremare ‐19‐21 Maggio. Presentazione relazione su XBASEtool: “La Tecnologia dei Sistemi Esperti nell’Edilizia: Qualità Edilizia e Manutenzione Intelligente” ‐ G.Mappa‐ Napoli, 1995.
  • [13] G. Mappa, R. Tagliaferri, D. Tortora – “On- line Monitoring based on Neural Fuzzy Techniques applied to existing hardware in Wastewater Treatment Plants” – AMSEISIS’ 97 – INTERNATIONAL SYMPOSIUM on INTELLIGENT SYSTEMS – September 12, 1997.
  • [14] G. Mappa, G. Falivene, M. Meneganti, R. Tagliaferri – “Fuzzy Neural Networks for Function Approximation” – Proceedings of the 6th International Fuzzy Systems Association World Congress IFSA (1997).
  • [15] G. Mappa – “Distributed Intelligent Information System for Wastewater Management Efficiency Control” – Wastewater Treatment Standards and Technologies to meet the Challenges of 21s t Century 4-7th April 2000 AD – Queen’s Hotel, Leeds, UK.
  • [16] G. Mappa, G. Salvi, G. Tagliaferri, R.  (1995) “A Fuzzy Neural Network for the On-Line Detection of B.O.D.” – Wirn Vietri ’95, VII Italian Workshop on Neural Nets ITALY.
  • [17] G. Mappa, A. Sciarretta, S. Moroni e M. Allegretti (1993) “Sistema Esperto per la Gestione degli Impianti di Trattamento delle Acque Urbane” ‐ Congresso Biennale ANDIS’93 ‐ Palermo ‐ 21‐23 Settembre ‐Vol.II. ‐ 1993
  • [18] “The Fractal Nature of Knowledge”  Arnold Kling – Posted on December 4, 2008 by sethearley. http://sethearley.wordpress.com/2008/12/04/the-fractal-nature-of-knowledge/
  • [19] Benoît B. Mandelbrot, Les objets fractals: forme, hasard et dimension, 1986
  • [20] Abraham Harold Maslow, A Theory of Human Motivation, Psychological Review 50(4) (1943):370-96.
  • [21] Carla O’Dell and C. Jackson Grayson, Jr. – “If Only We Knew What We Know,” Free Press, 1998.
  • [22] http://www.conoscenzaefficiente.it/
  • [23] http://waterenergyfood.net/2013/08/08/it-en-algoritmi-sullo-sviluppo-della-interdisciplinarieta-del-buonsenso-e-del-valore/
  • [24] http://waterenergyfood.net/2013/06/10/il-valore-della-conoscenza-nellera-della-net-economy-2-parte/
  • [25] http://waterenergyfood.net/2013/06/18/il-valore-della-conoscenza-nellera-della-net-economy-3-parte/

R&D Innovation Manager – Blockchain Business Analyst

Dott. Ing. Giovanni Mappa – Fondatore di ANOVAstudi – R&D Innovation Manager – Blockchain Business Analyst

CV-Luglio 2020- BC-RD Innovation Manager – G.Mappa

Competenze Universitarie in BLOCKCHAIN for Professional and Business Services

    • Logiche di Blockchain

    • Legal Authority

    • Privacy e Cybersecurity

    • Fintech

    • Supply Chain Management e logistica 4.0

Corso di Perfezionamento universitario “Blockchain for professional and business services” dell’Università degli Studi di Napoli “Parthenope” – Dipartimento di Studi Aziendali ed Economici (DISAE). Anno Accademico 2019/2020 – Dipartimento di Studi Aziendali ed Economici (DISAE) dell’Università degli Studi di Napoli “Parthenope”.  

PROJECT & INFORMATION MANAGEMENT – Corso di Formazione Avanzato “Teoria e Pratica di Project and Information Management nel Campo dell’Ingegneria“.  OICE Academy

ResearchGateLinkedin

2014: Riconoscimento “Nella Valigia dei Talenti ″ all’ing. Giovanni Mappa  fondatore di ANOVA studi.com

Premio13-07-2014Riconoscimento “Nella Valigia dei Talenti ″ a cura dell’Ass. Agorà e Comune di Crispiano (TA) – consegnato all’Ing. Giovanni Mappa (Fondatore di ANOVA)  il 13 Luglio 2014 dall’Ing. Michele Vinci

big_Vinci Angelo MicheleAngelo Michele VINCI – Cavaliere del LavoroPresidente di Confindustria Bari-BAT

Short CV:

Laureato in Ingegneria nel 1985 presso il Politecnico di Bari e iscritto all’Ordine degli Ingegneri dal 1986. Vincitore di una borsa di studio in una selezione nazionale di neolaureati da inserire nell’ambito della Ricerca e Sviluppo e Innovazione Industriale (Finsider), presso il CSM (Centro Sperimentale Materiali) a Roma, per un periodo di circa un anno (1986).

     

Dal 1987 al 1991, vive una intensa esperienza professionale come progettista e coordinatore nella società di ingegneria ITALIMPIANTI SpA (Gruppo IRI).

Nel 1992, entra come ricercatore nel Consorzio di Ricerca SESPIM per le Applicazioni Reali dell’Intelligenza Artificiale (ALENIA Marconi) con sede a Napoli, dove acquisisce una formazione specifica nell’ambito dell’utilizzo operativo delle tecnologie dell’Intelligenza Artificiale e dell’Ingegneria della Conoscenza. Nel 1994 assume in SESPIM il ruolo di coordinatore di progetti di ricerca riguardanti il settore dei Sistemi Esperti real-time per applicazioni ambientali e il settore della sensoristica intelligente (soff-sensors, virtual sensors).

Nel 1997, fonda con un’operazione di “spin-off” dal SESPIM, una società privata di ricerca industriale  (ANOVA), di servizi interdisciplinari di ICT e di Intelligenza Artificiale; società di cui è ancora oggi il titolare.

Dal 1998 al 2002 assume il ruolo di consigliere nel Direttivo Nazionale AI*IA Associazione Italiana per l’Intelligenza Artificiale con sede a Milano. Nello stesso periodo, assume la carica di vicepresidente nel Consorzio di Ricerca ENEA/TERRI presso il Centro Ricerche ENEA della Trisaia a Rotondella (MT).

Nel 2004 ottiene dal MIUR (Ministero dell’Istruzione, dell’Università e della Ricerca) per ANOVA, la certificazione di Laboratorio di Ricerca Industriale, nell’ambito dei Sistemi ICT e Sistemi Esperti per il “mercato libero” della ricerca industriale per le imprese (PMI), impiegando fino a 15 giovani ricercatori.

Dal 2007 al 2010, assume la carica di direttore tecnico-scientifico della società olandese SENSOR Intelligence B.V. presso la sede di Leeuwarden (NL), operante nelle applicazioni di sensori intelligenti software e nel controllo avanzato di processo (APC) con clienti olandesi tra cui la multinazionale Friesland Food.

Attualmente, svolge in ANOVAstudi.com attività di studio e sviluppo di progetti di Ricerca Industriale e Sviluppo Sperimentale in ambiti interdisciplinari STEM, dell’ingegneria della conoscenza e dell’Advanced Process Control (APC) nel paradigma di INDUSTRIA 4.0.

Autore di alcuni brevetti e una quarantina di pubblicazioni tecnico-scientifiche in tema di applicazioni reali dell’ingegneria della conoscenza [4-9-41], dal 2009 si dedica anche alla formazione interdisciplinare (STEAM) di figure professionali specialistiche operanti principalmente nell’ambito del Project Management (PM) e del Business Process Modeling (BPM), nonché alla formazione dei nuovi profili professionali “Knowledge Worker Interdisciplinari” (KWI) [4], in grado di operare anche nell’ambito della R&S Innovazione delle piccole e medie imprese (PMI).

Dal 2017 ad oggi,  l’Ing. Giovanni Mappa ricopre anche l’incarico di Coordinatore dell’Area Ricerca Sviluppo e Innovazione (RSI) per un gruppo di Imprese di Napoli operanti nell’ambito dell’Ingegneria e dell’Ambiente/Energia. La sua attività comprende lo sviluppo di applicazioni basate su tecnologie dell’ingegneria della conoscenza, di nuovi prodotti o di nuovi processi, della gestione del portafoglio progetti di R&S e dell’analisi di nuove opportunità di business. Inoltre, attualmente ricopre anche il ruolo di responsabile tecnico-scientifico nell’ambito dello sviluppo di due progetti di ricerca MISE (Horizon 2020), relativi alla realizzazione di una piattaforma tecnologica evoluta e intelligente e di una apparecchiatura meccatronica per analisi ambientali.

My English Skills:

Giovanni Mappa has successfully completed the EF SET Certificate

Articoli specialistici:

    • “IL MATTINO” del 30 Ottobre 2010 – “Siamo i Meccanici della Conoscenza”: La sfida ANOVA – di Diletta Capissi.
    • “Il Sole 24 ORE”del 31 Maggio 2010: “La Ricerca Industriale che Produce Conoscenza Tangibile”.
    • “Il Denaro” del 25 Maggio 2010 – INNOVAZIONE  “Formo Operai della Conoscenza ”: Giovanni Mappa: da ricercatore a imprenditore segnalato da Il Sole 24 ORE – di Tania Sabatino
    • “CORRIERE della SERA” del 21 Dicembre 2009 – “ANOVA: il futuro non è il prolungamento del passato”
    • “Il Sole 24 ORE” del 2 Marzo 2009: Tecnologie ICT e Intelligenza Sensoriale “Catturare la Conoscenza per la Competitività: “Reti Cognitive di Monitoraggio e Controllo di Processo”
    • “Il Denaro” del 18 Ottobre 2008 – “On-Line  Color Index Detector” OCD – Algorithms and Software like X-ray aimed at innovative on-line computation of typical multidimensional features of colours in a single Index IC”
    • “Il Denaro” del 9 Febbraio 2008 –  “Innovative Knowledge Worker ” – A Researcher Training Course based on Knowledge Engineering organized by ANOVA to newly-graduated human resources. di Tania Sabatino
    •  “Il Denaro” dell’8 Dicembre 2007 – “Smart PILOT” – A Manager Microchip like a Decision Support System in Business Strategy in Action Control”. di Tania Sabatino
    •  “Il Denaro” dell’1 Febbraio 2007 “AIREXP” – Intelligent Monitoring System for industrial air toxic pollution- di Tania Sabatino.

Principali Pubblicazioni Scientifiche:

    • COMUNICAZIONE INTERDISCIPLINARE – Algoritmi di Comunicazione ProAttiva e Apprendimento Interdisciplinare – Giovanni Mappa – ed eBook – edit. Mnamon, 2018.
    • Modelli di Conoscenza come catalizzatori di efficienza cognitiva e strumento di sviluppo di sistemi decisionali: il caso BATTLE – Giovanni Mappa, Maurizio Casarci (ENEA-2014)
    • Il VALORE della CONOSCENZA nell’Era della Net Economy  – Giovanni Mappa (2013 Outsider News)
    • “INTERDISCIPLNARY THINKING BY KNOWLEDGE SYNTHESIS” – Algoritmi sullo Sviluppo della Interdisciplinarietà, del Buonsenso e del Valore, per le professioni emergenti – Giovanni Mappa IlMioLibro Editore (Settembre 2011- disp. su La Feltrinelli)
    • Capturing Knowledge in Real-Time ICT Systems to Boost Business Performance – Copyright©2009, AAAI – Association for the Advancement of Artificial Intelligence (aaai.org) – G.Mappa, N.Brancati
    • Mappa – “Expert Software tools for Unfailing Water Quality” – TNO Environmental, Energy and Process Innovation – Apeldoorn, 21th March, 2003.G.Mappa.
    • G.Mappa, R.Tagliaferri, D.Tortora – “On-line Monitoring based on Neural Fuzzy Techniques applied to existing hardware in Wastewater Treatment Plants” – AMSE-ISIS’97 – International Symposium on Intelligent Systems  – September 12, 1997.
    • G.Mappa – “Expert Software tools for Unfailing Water Quality” – TNO Environmental, Energy and Process Innovation – Apeldoorn, 21th March, 2003.G.Mappa –
    • G.Mappa, R.Tagliaferri, D.Tortora “On-line Monitoring based on Neural Fuzzy Techniques applied to existing hardware in Wastewater Treatment Plants” ADVANCES IN INTELLIGENT SYSTEM – IOS Press Ohmsha, 1997.
    • G. Mappa, et Alii (1996) – “Development of an Expert System for Nitrogen Removal Process Control” – EUROPEAN WATER POLLUTION CONTROL – EWPCA European Water Pollution Control – Volume 6, Numero 6, Novembre 1996, pagg.45-50.
    • G.Mappa – “Integrated Expert System for waste water management efficiency control” – Programma SME 1999/1 “Promotion of Innovation and Encouragement of SME Participation” –  CRAFT-1999-70771- Progetto vincitore dell’Exploratory Award n°EXAW-1999-01473- 1999
    • G.Mappa – “Distributed Intelligent Information System for Wastewater Management Efficiency Control” INFOWWATER- Wastewater Treatment Standards and Technologies to meet the Challenges of 21s t Century  4-7th April 2000 AD – Queen’s Hotel, Leeds, UK – 2000
    • G. Mappa, A. Sciarretta, S. Moroni e M. Allegretti (1993) “Sistema Esperto per la Gestione degli Impianti di Trattamento delle Acque Urbane” – Congresso Biennale ANDIS’93 – Palermo- 21-23 Settembre -Vol.II. – 1993
    • G.Mappa “Expert System for Identification of Filamentous Microorganisms Causing Bulking and Foaming in Activated Sludge System “- IAWQ e PROVINCIA di PERUGIA – Perugia 1995.
    • G.Mappa – “MICROexpert: un Sistema Esperto per il Controllo dei Problemi di Separazione Solido-Liquido nei Depuratori a Fanghi Attivi, basato sulle metodiche di indagine microscopica” – INGEGNERIA SANITARIA – Marzo 1995 .
    • G.Mappa -“Un Kit di Sensori ad Intelligenza Artificiale per il Telecontrollo Low-Cost degli Impianti di Depurazione delle Acque” – NEWS 2/95 -Endress+Hauser – 1995
    • G.Mappa, et Alii – “Sistema di monitoraggio e gestione del trattamento delle acque cromiche” – AI*IA99 – 6° Congresso della Associazione Italiana per l’Intelligenza Artificiale 7 Settembre 1999 – Facoltà di Ingegneria – BOLOGNA – 1999
    • G.Mappa, et Alii  – “On-line diagnostic system with intelligent software instrumentation based on neural fuzzy network” –  SMI’97 International Congress on Plant Maintenance – Instrumentation section – Fiera di Bologna, February 25, 1997.
    • G.Mappa, G.Salvi, R.Tagliaferri. “A Fuzzy Neural Network for the On-Line Detection of B.O.D.” –  Wirn Vietri ’95, VII Italian Workshop on Neural Nets ITALY. 1995.
    • Bonvicini,V., Indelicato, M., Mappa, G. “Sistema esperto per il Controllo dei Depuratori Biologici” – Convention ANIPLA Florence ITALY. 22 April 1997.
    • Bonvicini,V., Indelicato, M., Mappa, G. “Sistema Esperto per il Controllo dei Depuratori Biologici” – BIAS Automazione e Strumentazione No 9, pp. 119-125. September 1997.
    • Bonvicini,V., GHIANI, R., Mappa, G. “Approccio Globale con Sensoristica Intelligente nella Progettazione e Gestione degli Impianti” – Workshop Centro Studi Perugia ITALY. 28/29 May 1998.
    • Bonvicini, V., Mappa, G., Sabatino, P. “Monitoraggio della Qualità delle Acque Depurate con Sensori Intelligenti low-cost“ – WORKSHOP ’99 Artificial Intelligence for the Environment, Bologna ITALY. 17 September 1999.
    • Ghiani, R., Mappa, G. – “Sistema Esperto di Telecontrollo per il trattamento e Riutilizzo delle Acque Reflue” – WORKSHOP ’99 Artificial Intelligence for the Environment, Bologna ITALY. 17 September 1999.
    • Mappa, G., Sabatino, P. “Applicazione della sensoristica intelligente ‘INTESYSensors’ per il controllo on-line di un impianto di trattamento e affinamento di acque reflue in Sardegna” – Convention ANIPLA Automazione ’99 Roma ITALY. 24/25 November 1999.
    • O.Conio, V.Bonvicini, A.Carli, G.Mappa, et Alii – “ACQUE REFLUE URBANE – Sistemi Fognanti e Depurativi” – I processi, gli impianti e gli impatti – AMGA SpA – ECIG Editore – Genova 2002.
    • ATI 41° Congresso Nazionale – “Impianti a pompa di calore elioassistiti: modello di simulazione e verifica sperimentale su impianto pilota” – D.Laforgia, G.Mappa, V.Simi – Castel dell’Ovo –  Napoli, 23-26 Settembre 1986.
    • ATI  41° Congresso Nazionale – “Calcolo della radiazione solare globale su una superficie piana comunque inclinata: modello di previsione e verifica sperimentale” – D.Laforgia, G.Mappa  – Napoli, 23-26 Settembre 1986.
    • UNIVERSITA’ DI FIRENZE – Facoltà di Ingegneria – “Applicazioni Software in Campo Ambientale”; Intervento sul tema:” Sistemi di Monitoraggio Intelligente”; G. Mappa – Firenze, 17 aprile 1998.
    • CONVEGNO E+H sulla Strumentazione per la Gestione degli Acquedotti – Endress+Hauser – Napoli, 2 marzo 2000 – “Il Monitoraggio Consapevole nella gestione delle risorse idriche ” – José M. Schoorl, G.Mappa.
    • L’AMBIENTE – “Piattaforma Integrata di Sistema Esperto per il controllo in tempo reale dell’impianto di depurazione Darsena” di Genova” V. Bonvicini, M. Indelicato, G. Mappa, F. Guglielmi (1997) – Ranieri Editore, N.1 Gen.-Feb., 1997.
    • CENTRO STUDI DI PERUGIA – “La Gestione degli Impianti di Depurazione delle em for industrial Air PollutionAcque di Scarico: esperienze nazionali a Confronto” 28-29 Maggio 1998. Intervento sul tema:”Approccio Globale con Sensoristica Intelligente nella Progettazione e Gestione degli Impianti di Depurazione “- V. Bonvicini, R. Ghiani, G. Mappa , 1998.

Strumenti Logico-Matematici I.T.K.S. per la Gestione Interdisciplinare della Conoscenza, dell’Innovazione e dei Processi Decisionali

K http://www.h2biz.eu/scheda_prodotto.asp?prod=2079

Formazione e Trasferimento Tecnologico per l’acquisizione degli Strumenti Logico – Matematici dell’approccio interdisciplinare I.T.K.S. (Interdisciplinary Thinking by Knowledge Synthesis).

Si tratta di una metodologia che aiuta notevolmente a risolvere la complessità dei problemi professionali, attraverso il riconoscimento e/o l’utilizzo di “Modelli di Conoscenza”. Questi ultimi, possono essere assimilati a strutture canoniche di Conoscenza (esplicita o implicita), il cui riconoscimento appunto, consente di risolvere più rapidamente e facilmente, i vari “puzzle” che si incontrano generalmente nei processi di problem – solving e presa di decisione, nonché nell’ambito dello sviluppo dell’innovazione di processo.
La metodologia I.T.K.S. nasce agli inizi degli anni ’90 come “motore inferenziale” di sintesi logico – matematica ed è utilizzato per lo sviluppo informatico di Sistemi Esperti ES e di Supporto alle Decisioni DSS (Intelligenza Artificiale).
Dall’esperienza applicativa informatica e da quella relativa alla formazione del personale addetto, si è venuto a creare un vero e proprio approccio cognitivo interdisciplinare, trasferibile ai diversi profili professionali emergenti e “Knowledge Intensive”.
La vera innovazione nella metodologia I.T.K.S. risiede soprattutto nel concetto di “indipendenza della struttura della Conoscenza” dal contesto (lessicale) in cui si sviluppa, nonché nella possibilità di “modellare” con linguaggio universale logico – matematico “porzioni” di Conoscenza ricorrente con Modelli di diverso tipo, derivanti ad es. dalla esperienza popolare, fino alle leggi più rigorose della Fisica o dell’Economia, ecc. Detta possibilità, oltre a fornire l’indubbio vantaggio di riuscire a ”capitalizzare” la conoscenza, funge da catalizzatore nei processi cognitivi (sia umani che informatici), nel senso che consente di generare le conclusioni più valide nel minor tempo.
L’utilizzo applicativo dei Modelli di Conoscenza come già detto, ricopre una casistica molto ampia, fino allo sviluppo di sistemi on – line/real – time e di early – warning, nonché ove vi sia la necessità di prendere delle decisioni, in situazioni caratterizzate da elevata eterogeneità quantitativa e qualitativa dei dati come ad es., nei processi ambientali, nella gestione dei processi industriali e addirittura, nella valutazione di beni intangibili (ad es. il valore stesso della conoscenza).

Come Potenziare le proprie Capacità di Sintesi Cognitiva e Abilità Decisionali, senza ricorrere a Coach, Mentor o Guru?
________________________________
Per la frequentazione del Corso ITKS è preferibile possedere una base formativa scientifica anche scolastica (nell’ambito delle Scienze Matematiche, Fisiche e Naturali, ovvero nell’ambito delle Scienze Economiche e Statistiche).

Per Info:

Algoritmi sullo sviluppo della Interdisciplinarietà, del Buonsenso e del Valore

front  Interdisciplinary Thinking by Knowledge Synthesis

(2011) In un mercato del lavoro contraddittorio e imprevedibile come quello attuale, nel quale le professionalità “medie” (“colletti bianchi”) sono sempre meno richieste, a favore di un dicotomico interesse per la categoria degli artigiani (cuochi, panettieri, ecc.) da una parte, emergenti professionalità “Knowledge Intensive” dall’altra. Queste ultime, frutto della globalizzazione della conoscenza, sono caratterizzate da una crescente competitività in termini di flessibilità e interdisciplinarità. La sfida da affrontare è il lavoro che manca, perché per decenni si è puntato solo alla riduzione dei costi, piuttosto che alla creazione di valore ed eliminazione degli sprechi. La sfida da affrontare è il lavoro che cambia, sia in termini temporali, che in termini concettuali: se è cambiata la domanda, l’offerta dovrà necessariamente adeguarsi.

Non possiamo pretendere che le cose cambino, se continuiamo a fare sempre le stesse cose...” (A. Einstein).  Il presente lavoro intende contribuire a dare possibili risposte alle seguenti domande:

  • è possibile potenziare la propria professionalità, per capire ed adeguarsi al nuovo livello di competitività?
  • è possibile potenziare la propria capacità di elaborare e sintetizzare l’enorme volume di dati e informazioni, con le quali dobbiamo confrontarci ogni giorno?
  • è possibile sviluppare, in uno scenario di complessità lavorativa, il “buonsenso” nella presa di decisione e la capacità di creare nuovo “valore”?
  • è possibile fare tutto ciò in un tempo sostenibile (mesi e non anni)?

La soluzione proposta in questi libro di appunti è l’apprendimento del “ragionamento interdisciplinare” (v. http://www.conoscenzaefficiente.it) e la metodologia proposta, nelle sue linee essenziali, si basa sul concetto dell’esistenza una struttura comune e ricorrente della conoscenza (Knowledge’s Common Frame) che, con le sue proprietà e dinamiche evolutive, rappresenta la “chiave di volta” del nuovo approccio. Pur contenendo algoritmi di tipo matematico, il testo segue un filo logico discorsivo che lo rende adatto a lettori con un “background” non solo di tipo tecnico-scientifico, ma anche economico-gestionale e politico.

Il libro è scritto in un inglese tecnico, ma contiene note e commenti in Italiano. Due casi applicativi della metodologia, come l’Interdisciplinary Knowledge Worker e il K-commerce, sono riportati ad esempio.

Something old, something new, something better…,   perhaps something for you.