Come Potenziare le proprie Capacità di Sintesi Cognitiva e Abilità Decisionali, senza ricorrere a Coach, Mentor o Guru?

growth_121908064Se consideriamo che l’unica certezza è l’incertezza, la cosa più naturale da fare è quella di convivere serenamente con quest’ultima. Siamo costretti allora a ricorrere ai tanti coach, mentor o guru disponibili sui “social-market” o ce la possiamo cavare autonomamente con un buon metodo e un po’ di sano buonsenso?  Ma come? Beh, intanto c’è un primo punto da chiarire: esiste la possibilità di gestire” razionalmente o meglio, secondo logiche matematiche (quindi, non opinabili), l’incertezza  insita in tutto quello che facciamo o pensiamo. Che significa? Se avessimo gli strumenti per gestire l’incertezza rendendola man mano “un po’ più certa”, risolveremmo diversi problemi… magari non immediatamente quello di avere più soldi in tasca, ma almeno quello di orientarsi nella direzione più sostenibile per noi, per ottenerli…  E non è poco, se pensiamo ad es. che in un momento di crisi come quello attuale, la cosa più naturale e insensata è quella di “provare” in ogni direzione possibile, ritrovandosi dopo un pò allo stesso punto di partenza…

La notizia non è che gli strumenti per gestire l’incertezza ci sono già ... (a questo proposito ho trovato molto intrigante l’articolo su l’intelligenza musicale per la formazione personale e professionaleGestire l’incertezza: Strumenti e risorse per affrontare l’instabile presente), ma è che questi strumenti sono finalmente alla portata di tutti e tutti finalmente possono trarne vantaggio: dallo studente ventenne che deve scegliere il proprio percorso formativo professionale, al manager trentacinquenne che deve operare in contesti interdisciplinari e complessi, al quarantacinquenne che si trova a dover ricominciare un nuovo percorso di vita professionale (e non solo…).

Qual è la risposta alla domanda iniziale? La risposta “più vera” secondo me, è quella che è stata validata anche dall’esperienza (ventennale) sul campo e che in questo caso, può essere indicata come : sviluppo del Ragionamento Interdisciplinare per Modelli di Conoscenza noti (ITKS) ... E’ qualcosa di più semplice e “naturale” di quello che possa trasparire dai termini che lo descrivono. Il mio testo di riferimento è “Interdisciplinary Thinking by Knowledge Synthesis” (in Inglese con alcuni chiarimenti in Italiano), ma consiglio di non comprarlo (sarà regalato a chi vorrà approfondire l’argomento…) ed è scritto nella forma di raccolta di appunti delle lezioni utilizzate per la formazione dei miei collaboratori impiegati nella ricerca e innovazione industriale in ANOVA Lab.

La infosoluzione ITKS qui proposta è un programma auto-formativo di supporto suddiviso in 3 fasi:

  1. ITKS_intro: introduzione ai Modelli di Conoscenza ITKS per la Gestione dell’Incertezza.
  2. ITKS_base: introduzione agli Strumenti Logico-Matematici di Sintesi Cognitiva e Risoluzione della Complessità.
  3. ITKS_expert: sviluppo applicativo diSistemi di Monitoraggio Early WarningSistemi Esperti e di Supporto alle Decisioni.

Provare per credere!

.

“L’inconveniente delle persone e delle nazioni è la pigrizia nel cercare soluzioni e vie di uscita”  (Albert Einstein)

________________________________________________________________

Per ricevere informazioni sui Corsi di Formazione compila il seguente Form (o contattami direttamente al +39.348.3366137  – g.mappa@anova.it):

Modelli di Conoscenza ITKS: come Utilizzarli, quali i Vantaggi

I Modelli di Conoscenza e il loro utilizzo 

Per definire in maniera esaustiva il concetto di Modello di Conoscenza (Knowledge Model)  bisognerebbe addentrarsi nei meandri delle Scienze Cognitive; per constatarne invece la loro utilità operativa e applicabilità pratica, l’ambito di riferimento è l’Ingegneria della Conoscenza: su questi argomenti esiste infatti un immenso patrimonio di letteratura tecnico-scientifica, a partire addirittura dagli anni ’50.

In termini generali, può essere sufficiente definire un Modello di Conoscenza come un algoritmo di “sintesi logico-matematica” in grado di inferenziare una moltitudine di dati/informazioni (input), per generare meta-informazioni (output)  rispetto ad un target  prefissato .  In realtà, i modelli di conoscenza sono già a noi familiari da tempo e addirittura insiti nella nostra natura di esseri viventi in grado di osservare quanto ci circonda, interpretare tempestivamente gli eventi, gestire le incertezze e prendere delle decisioni di buon senso.

Infatti, tutti noi seguiamo dei modelli di riferimento che possono riguardare l’etica, la famiglia, la politica, ecc., come insieme di regole e valori condivisi e collaudati. Esempi tipici di modelli di conoscenza si ritrovano addirittura negli aforismi o nei proverbi, nati dall’esperienza e dalla saggezza popolare: ci aiutano in qualche modo a riflettere e a metterci in allerta (early warning) di fronte ad eventi di pertinenza.

Peraltro, nell’era in cui viviamo dell’Economia della Conoscenza e della ricerca dello sviluppo sostenibile, ciò si tradurrebbe da un lato, nella necessità di gestire la conoscenza secondo principi “tangibili” di economia, introducendo strumenti di misurazione del valore della conoscenza e dall’altro sviluppando un approccio sistematico e interdisciplinare alla risoluzione dei problemi. Tutto ciò si traduce nella necessità di gestire la conoscenza in maniera efficiente, ovvero in maniera tale da raggiungere gli obiettivi nel minor tempo e con la massima economicità, mentre ora sappiamo farlo già in maniera efficace e stiamo ancora imparando a farlo in maniera economica: Net-Economy, Big-Data, Green Energy, Smart City  sono solo alcuni dei possibili contesti che ci richiamano il concetto di conoscenza efficiente.

I Modelli di Conoscenza ci aiutano a questo scopo: sono dei “Knowledge Pattern”, sintesi di regole già note o rese tali da opportuni procedimenti di estrazione di conoscenza (Data Mining /Knowledge Extraction), che forniscono le chiavi di lettura della complessità trasformandola in un sistema di knowledge pattern più semplici e sintetici. In altri termini, i modelli di conoscenza fungono da “scorciatoia” o da catalizzatori  nei processi cognitivi per aumentarne l’efficienza. L’approccio dei Modelli di Conoscenza è stata presentato ufficialmente dall’autore della presente memoria per la prima volta nel 1993 a Palermo, in occasione del Congresso ANDIS, come sviluppo di un Sistema Esperto per la gestione dei processi biologici di depurazione delle acque, dimostrando come fosse possibile prevenire le anomalie di processo, incrociando i dati chimico-fisici di processo con le informazioni quali-quantitative relative al comportamento biologico (non-deterministico) dei microorganismi depurativi.

Un modello di conoscenza non è necessariamente qualcosa di complicato: vedi esempio del Modello del Valore dei Prodotti Servizi

Concetti e Principi Base

I Modelli di Conoscenza (Knowledge Models) sono quindi algoritmi che utilizzano il “linguaggio universale” della matematica per sviluppare in maniera quali-quantitativa sintesi di regole, di concetti e di scenari. Entrando più nel merito dell’argomento, è possibile enucleare alcuni concetti sui quali si basa applicazione della metodologia.

Risulta necessario infatti definire alcuni punti chiave:

  1. Catena della Conoscenza: si tratta del primo principio sul quale si basa la struttura dei modelli di conoscenza, ovvero quello relativo alla Knowledge Chain DIKW (Data/Info/Knowledge/Wisdom), nella quale si distinguono i dati dalle informazioni e queste ultime dalla conoscenza, fino ad arrivare al concetto di saggezza.
  2. Indipendenza Strutturale della Conoscenza dal contesto di riferimento: la struttura della conoscenza non è legata al peculiare ambito applicativo, ovvero: i processi di ragionamento fautori di conoscenza seguono dinamiche trasversali e interdisciplinari che sono ripetitive secondo classi tipologiche che fanno parte di un sistema inerziale nel quale valgono universalmente i principi base della Natura e dell’uomo (v. Piramide dei Bisogni Primari di A.Maslow), a prescindere dagli scenari tecnologici, politici e di mercato del momento.
  3. Propagazione del Grado di Certezza (vs Probabilità): se due o più informazioni input hanno un contenuto informativo inferenziale, eventualmente anche parziale o incerto a favore di una certa conclusione output, quest’ultima, frutto dell’intersezione ”insiemistica “ delle prime due, acquisirà un grado di certezza maggiore di quello contenuto in ciascuna delle informazioni di origine.
  4. Computazione Non-Deterministica: la computazione non deterministica ci consente di fare operazioni con le informazioni quali-quantitative anziché con i dati, ovvero  con il contenuto informativo che i dati possono o meno esprimere. 
  5. Modellazione Reticolare della Conoscenza: dal punto di vista logico, ogni modello di conoscenza è rappresentabile da una “cella informativa base” dotata di “n” dati/info in ingresso (input) e “m” meta-informazioni in output: all’interno della cella è possibile avere differenti relazioni di inferenza input/output: dalla semplice inferenza XY (curva di conoscenza n=1, m=1), fino a intere matrici “n*m” inferenziali. Gli “m” output di una cella possono a loro volta diventare in parte o in toto, input per un’altra cella e così via fino a realizzare una rete di celle in grado di elaborare un numero teoricamente infinito di informazioni.

Come Utilizzare i Modelli di Conoscenza:

  1. Sintesi Logico-Matematica di concetti chiave, complessi o interdisciplinari
  2. Modello di Simulazione Previsionale
  3. Modello Decisionale
  4. Computazione Non-Deterministica

Quali i Vantaggi:

  • Risolvere i Problemi Complessi in maniera più rapida ed economica
  • Sviluppare Schemi di Ragionamento più Efficaci ed Efficienti: una marcia in più per molte professioni
  • Sviluppare Innovazione di Processo mediante rielaborazione di Soluzioni già esistenti in altri campi
  • Operare con entità intangibili (ad es. il Capitale Intellettuale) anche mediante l’utilizzo di sistemi informatici
  • Sviluppare Modelli Dinamici di “Presa di Decisione”

Esempi di Modelli di Conoscenza

Modelli Logico Matematici:

Modelli Euristici:

__________________________________________________

Per informazioni compilare il seguente Form:

Risparmio Energetico e Miglioramento Depurativo mediante controllo a “setpoint dinamico” dell’Ossigeno Disciolto: WDOxy Fuzzy

Prodotti Software SWT

Porcellino3Risparmio Costi di Gestione con WDOxy-Fuzzy Controller

Il Modello WDOxy Fuzzy è una procedura di calcolo real-time per il Set-Point Variabile dell’OD, ovvero della concentrazione di ossigeno disciolto necessaria per le effettive esigenze real-time del metabolismo batterico della rimozione del carbonio e dell’azoto.

La procedura WDOxy Fuzzy è stato sviluppato sulla base di algoritmi bio-processistici in “Logica Fuzzy” e sull’utilizzo in “input” della misura on-line del valore di concentrazione NH4 (in alternativa: ORP), oltre alla misura on-line dell’OD; restituisce in “output” in tempo reale, il valore di set-point ottimale di OD. WDOxy Fuzzy è applicabile sia a impianti biologici ad aerazione continuata che intermittente.

Concentrazione dell’Ossigeno Disciolto e Controllo Energetico: un controllo adeguato del funzionamento di un impianto di depurazione e in particolare, del reattore biologico  (CSTR a “fanghi attivi” e con rimozione di N e P), si rende necessario sia per garantire la qualità dell’effluente e il rispetto dei limiti di legge, sia per contenere le spese di gestione: aspetto quest’ultimo che sta assumendo un’importanza sempre maggiore a causa dei crescenti costi dell’energia.  Infatti, il controllo della fornitura di aria in un impianto a fanghi attivi è importante per le seguenti motivazioni:

  • la fornitura di ossigeno è una delle principali voci di costo gestionali (10÷30 %);
  • la fornitura di ossigeno è un fattore determinante per l’affidabilità della qualità dell’effluente depurato;
  • la fornitura di ossigeno è un fattore determinante per l’efficienza della sedimentazione dei fanghi e dello stato di salute della biomassa.

Concentrazione dell’Ossigeno Disciolto e Bulking Filamentoso: la concentrazione dell’ossigeno disciolto (OD) nel reattore è un parametro di input di enorme importanza per la sua influenza sul bulking filamentoso e quindi, sulla sedimentabilità dei fanghi. La relazione tra il OD e lo SVI è direttamente influenzata dal carico organico (F/M): più elevato è il carico organico, più alta è la concentrazione di ossigeno disciolto necessaria per prevenire il bulking. La proliferazione di alcuni batteri filamentosi quali lo S.Natans, tipo 1701, e l’H. hydrossis in condizioni di basso ossigeno disciolto può essere attribuita all’elevata affinità (bassa costante di semisaturazione) che essi hanno per l’ossigeno.

Il controllo tradizionale con  Set-Point Prefissato dell’ossigeno disciolto:

  • Non si tiene conto della resa del processo di depurazione: necessaria la misura di un altro parametro (efficienza abbattimento NH4)
  • Non si tiene conto della variabilità del carico entrante: si fornisce troppo o troppo poco ossigeno per la maggior parte del tempo
  • Scarsa stabilità di controllo: i metodi di controllo tradizionali sono troppo semplificati e danno luogo ad instabilità

WDOxy

Vantaggi del sistema a Set-Point OD Dinamico WDOxy-Fuzzy rispetto al sistema tradizionale a Set-Point Prefissato: 

  • Risposta immediata a picchi entranti e condizioni di variabilità di carico entrante grazie ad un adattamento continuo del set-point di ossigeno disciolto: adattamento del processo biologico alle variazioni di carico in ingresso. Il sistema a set-point OD Dinamico, a differenza del sistema di controllo tradizionale (a set – point fisso di ossigeno disciolto) che evidenzia ampie oscillazioni, dimostra una notevole stabilità nel raggiungimento delle condizioni di processo ottimali, anche di fronte a significative variazioni del carico entrante
  • Maggiore stabilità di processo ed efficienza depurativa, con particolare riferimento al processo di nitrificazione;
  • Elevato risparmio energetico 15-20%  e contestuale eliminazione degli eccessi di nitrificazione, in quanto viene evitata la fornitura di aria in eccesso ed ottenendo un miglior rendimento di trasferimento di ossigeno da parte dei diffusori.
  • Assicura l’efficienza del rendimento di rimozione richiesto.

_________________________________________________________________________________

WDOxydevPackage di Acquisto WDOxy Fuzzy:

  • Software di Valutazione Dimensionamento/Configurazione
  • Codice in Logica Fuzzy (PLC)
  • Servizio di Assistenza Tecnica

Per ulteriori informazioni o quotazioni di offerta compila il form quì di seguito.

_________________________________________________________________________________

Esempio Applicativo WDOxy Fuzzy a Set-Point Dinamico:

Liquicontrol NDP  

Lc

EH

Liquicontrol NDP è un innovativo sistema di gestione e controllo dell’ossigeno disciolto in vasca d’aerazione e della concentrazione dell’azoto ammoniacale nell’effluente. Il valore di Azoto ammoniacale viene misurato in continuo, confrontato in tempo reale con il valore desiderato ed infine, utilizzato per il calcolo del set-point variabile dell’ossigeno disciolto. Il valore del set-point di ossigeno disciolto è poi confrontato con la misura dell’ossigeno disciolto presente in vasca in quel momento e determina, grazie ad una regolazione con logica fuzzy, l’erogazione dell’aria.

Brocure: Liquidcontrol NDP

Per la stima del risparmio energetico relativo al sistema Liquicontrol NDP, è possibile utilizzare un parametro denominato Indice di Prestazione ENergetica: rapporto tra l’energia attiva assorbita dal comparto di aerazione ed i più significativi carichi inquinanti rimossi, pesati secondo l’effettivo contributo alla fornitura d’aria:

IPEN = Energia (kWh/d) / [0,3*CODrimosso (kg/d)+0,7*NH4+rimosso(kg/d)]

SISI-EHLiquicontrol

Referenze in primo piano:

__________________________________________________________________________________

Per ulteriori informazioni o quotazioni di offerta compila il form:

Sviluppare una “Conoscenza Efficiente” con i Modelli di Conoscenza (ITKS)

Modelli di Conoscenza come Catalizzatori di Efficienza Cognitiva e Strumento di Sviluppo di Sistemi Decisionali

_____________________________________________________________________________________________

I Modelli di Conoscenza e il loro utilizzo: per definire in maniera esaustiva il concetto di Modello di Conoscenza (Knowledge Model)  bisognerebbe addentrarsi nei meandri delle Scienze Cognitive; per constatarne invece la loro utilità operativa e applicabilità pratica, l’ambito di riferimento è l’Ingegneria della Conoscenza: su questi argomenti esiste infatti un immenso patrimonio di letteratura tecnico-scientifica, a partire addirittura dagli anni ’50. In termini generali, può essere sufficiente affermare come un Modello di Conoscenza sia un algoritmo di “sintesi logico-matematica” in grado di elaborare (inferenziare) una moltitudine di dati/informazioni acquisiti come input da fonti esterne eterogenee, per restituire come output informazioni decisionali rispetto ad un target  prefissato.

In questo contesto, si intende mettere in evidenza come i modelli di conoscenza siano già a noi familiari da tempo e addirittura insiti nella nostra natura di esseri viventi in grado di osservare quanto ci circonda, interpretare tempestivamente gli eventi, gestire le incertezze e prendere delle decisioni di buon senso. Infatti, tutti noi seguiamo dei modelli di riferimento che possono riguardare l’etica, la famiglia, la politica, ecc., come insieme di regole e valori condivisi e collaudati. Esempi tipici di modelli di conoscenza si ritrovano addirittura negli aforismi o nei proverbi, nati dall’esperienza e dalla saggezza popolare: ci aiutano in qualche modo a riflettere e a metterci in allerta (early warning) di fronte ad eventi di pertinenza.

Peraltro, nell’era in cui viviamo dell’Economia della Conoscenza e della ricerca dello sviluppo sostenibile, ciò si tradurrebbe da un lato, nella necessità di gestire la conoscenza secondo principi “tangibili” di economia, introducendo strumenti di misurazione del valore della conoscenza e dall’altro sviluppando un approccio sistematico e interdisciplinare alla risoluzione dei problemi. Tutto ciò si traduce nella necessità di gestire la conoscenza in maniera efficiente, ovvero in maniera tale da raggiungere gli obiettivi nel minor tempo e con la massima economicità, mentre ora sappiamo farlo già in maniera efficace e stiamo ancora imparando a farlo in maniera economica: Net-Economy, Big-Data, Green Energy, Smart City  sono solo alcuni dei possibili contesti che ci richiamano il concetto di conoscenza efficiente [22][23][24][25]. I Modelli di Conoscenza ci aiutano a questo scopo: sono dei “Knowledge Pattern”, sintesi di regole già note o rese tali da opportuni procedimenti di estrazione di conoscenza (Data Mining /Knowledge Extraction), che forniscono le chiavi di lettura della complessità trasformandola in un sistema di knowledge pattern più semplici e sintetici. In altri termini, i modelli di conoscenza fungono da “scorciatoia” o da catalizzatori  nei processi cognitivi per aumentarne l’efficienza. L’approccio dei Modelli di Conoscenza è stata presentato ufficialmente dall’autore della presente memoria per la prima volta nel 1993 a Palermo, in occasione del Congresso ANDIS, come sviluppo di un Sistema Esperto per la gestione dei processi biologici di depurazione delle acque, dimostrando come fosse possibile prevenire le anomalie di processo, incrociando i dati chimico-fisici di processo con le informazioni quali-quantitative relative al comportamento biologico (non-deterministico) dei microorganismi depurativi.

Un modello di conoscenza non è necessariamente qualcosa di complicato, anzi può essere molto semplice, ad esempio se consideriamo la seguente espressione del Valore di un prodotto/servizio:

 Se un prodotto/servizio fornisce le funzionalità f1+f2+f3, il costo di produzione corrispondente sarà c1+c2+c3 e pertanto:

  • se si sbaglia a fornire una o più funzionalità fi perché non corrispondente a quanto richiesto o perché non necessaria, si avrà comunque un costo corrispondente ci e quindi, il Valore Vp sarà inferiore al dovuto: ciò esprime il concetto di Qualità del Prodotto/Servizio;
  • se a parità di fi, riduco i costi ci dislocando l’azienda in paesi dell’estero ove è possibile farlo o acquistando materie prime più economiche il Valore Vp aumenta (virtualmente), ma dal momento che ci (al denominatore) può al limite tendere a zero, dopo di che il prodotto/servizio è perso inevitabilmente: ciò esprime il concetto di una Visione (suicida) di Cash-Flow di breve periodo del Prodotto/Servizio;
  • solo migliorando e incrementando le fi, ovvero investendo in ricerca e innovazione si ha che il Valore si incrementa realmente (al limite all’infinito) ed è in grado di competere sul mercato: ciò esprime il concetto di una Visione (imprenditoriale) di medio-lungo periodo del Prodotto/Servizio;

Come è facile constatare, un semplice rapporto come quello sopraindicato  esprime da solo, un modello di conoscenza che se fosse stato utilizzato dalla politica economica degli ultimi vent’anni, l’Italia oggi si troverebbe a competere con un rafforzato  Made in Italy senza la necessità di svendere le aziende italiane e il patrimonio nazionale [7].

Concetti e Principi Base:Modelli di Conoscenza (Knowledge Models) sono quindi algoritmi che utilizzano il “linguaggio universale” della matematica per sviluppare in maniera quali-quantitativa sintesi di regole, di concetti e di scenari. Entrando più nel merito dell’argomento, è possibile enucleare alcuni concetti sui quali si basa applicazione della metodologia. Risulta necessario infatti definire alcuni punti chiave:

a) Catena della Conoscenza: si tratta del primo principio sul quale si basa la struttura dei modelli di conoscenza, ovvero quello relativo alla Knowledge Chain DIKW (Data/Info/Knowledge/Wisdom), nella quale si distinguono i dati dalle informazioni e queste ultime dalla conoscenza, fino ad arrivare al concetto di saggezza. I dati sono definibili come entità statiche, “fotografie” di fatti e sono quindi espliciti, in genere sono espressi in forma alfanumerica, prodotti da fonti (database, sensori,…) che ne condizionano poi la loro “qualità”.  Le informazioni sono entità dinamiche ed evolutive, caratterizzate da un proprio ciclo di vita, nascono in forma esplicita o latente, sono correlate ad uno o più processi (mentali, personali, ambientali, produttivi, ecc.) ed esercitano su tali processi una propria influenza (o “peso”).  Ad esempio: misurando la temperatura, la pressione atmosferica e l’umidità relativa esterna (dati), si ottiene un’informazione che può essere correlata all’abbigliamento da indossare (processo), condizionata dal “peso” che la stessa informazione ha su una determinata persona piuttosto che su un’altra e dura lo spazio temporale (ciclo di vita) limitato alla rispettive necessità di uscire da casa.

ke2.jpg (1040×296)

Fig.1 – La Catena della Conoscenza DIKW

La catena della conoscenza  DIKW non è solo un legame funzionale, ma esprime anche una azione: “ La conoscenza è informazione in azione“[21]. Con riferimento al DIKW e alle precedenti considerazioni, si potrebbe quindi definire la conoscenza come la facoltà umana risultante dall’interpretazione delle informazioni finalizzata all’azione (Knowledge in Action), ovvero il risultato di un processo di inferenza e di sintesi (ragionamento), a partire da dati verso la saggezza (come ulteriore livello di astrazione dalla conoscenza acquisita).

b)  Indipendenza Strutturale della Conoscenza dal contesto di riferimento: il principio base più innovativo è senza dubbio quello che esprime l’indipendenza della conoscenza dalla struttura lessicale e dal particolare glossario dei termini utilizzato: la struttura della conoscenza non è legata al peculiare ambito applicativo, ovvero: i processi di ragionamento fautori di conoscenza non sonofigli unici di madre vedova”, ma seguono dinamiche trasversali e interdisciplinari che sono ripetitive secondo classi tipologiche che fanno parte di un sistema inerziale nel quale valgono universalmente i principi base della Natura e dell’uomo (v. Piramide dei Bisogni Primari di A.Maslow [20]), a prescindere dagli scenari tecnologici, politici e di mercato del momento. Un esempio per tutti di indipendenza strutturale della conoscenza: l’Ingegneria Biomedica è nata quando finalmente discipline diverse dal punto di vista lessicale e dei contenuti, come la medicina, la fisica, l’ingegneria, la biologia, ecc., si sono incontrate “interdisciplinarmente” nel suddetto sistema di riferimento inerziale, al fine di soddisfare un bene primario come quello della salute.  L’esistenza di una struttura comune della conoscenza consente un’interazione più facile con nuove aree di conoscenza e favorisce lo sviluppo dell’approccio di ragionamento interdisciplinare o “Interdisciplinary Thinking” [7], in quanto anche trovandosi in un contesto nuovo di conoscenza, è possibile riconoscere la struttura (comune) di ragionamento di riferimento e adattarsi velocemente allo specifico lessico e al glossario dei termini utilizzato e infine, essere in brevissimo tempo pro-attivi fornendo il proprio contributo cognitivo.

c)  Propagazione del Grado di Certezza (vs Probabilità): altro principio fondamentale e distintivo dei modelli di conoscenza rispetto ad esempio, all’approccio statistico e probabilistico utilizzato normalmente nello sviluppo di strumenti inferenziali complessi come le ”Reti Bayesiane”, è che nella realtà  industriale (e non solo) è poco frequente disporre di dati sufficientemente numerosi ed affidabili, nonché rappresentativi di un prefissato fenomeno in esame. Spesso viene confusa ad es. l’esistenza di un fenomeno con la frequenza con cui esso appare, fino a commettere l’errore di negarne l’esistenza soltanto perché “poco probabile”: è superfluo sottolineare come le catastrofi che puntualmente si verificano (in Italia e nel mondo) in occasione di ogni evento naturale “anomalo”, siano anche frutto di valutazioni a bassa probabilità… I modelli di conoscenza operano sulla propagazione della certezza, la quale si basa sul seguente concetto: se due o più informazioni input hanno un contenuto informativo inferenziale, eventualmente anche parziale o incerto a favore di una certa conclusione output, quest’ultima, frutto dell’intersezione ”insiemistica “ delle prime due, acquisirà un grado di certezza maggiore di quello contenuto in ciascuna delle informazioni di origine.

d) Computazione Non-Deterministica: i Modelli Matematici possono essere considerati come un particolare sottoinsieme dei Modelli di Conoscenza, ma mentre nei primi si rappresenta la realtà dei fenomeni secondo procedimenti  deterministici e subordinata in genere a delle ipotesi iniziali semplificative, nei modelli di conoscenza la realtà è rappresentata anche nella propria natura non-deterministica, attraverso un approccio sistemico e procedimenti che tengono conto della “naturale” incertezza nei dati e nelle informazioni, rispetto alla minimizzazione degli errori e alla ricerca di soluzioni di “buon senso” (common sense).  Poniamoci infatti, la seguente domanda: nel ragionare e prendere ad es. una decisione, il nostro cervello risolve un sistema di equazioni o risolve per caso un’espressione algebrica? Certo che no. Allora forse c’è un “gap” tra quello che ci hanno insegnato a scuola nell’ambito delle computazione di dati (v. Matematica) e il modo “naturale” di computare informazioni proprie del nostro cervello e poi trasferito alle macchine (v. Intelligenza Artificiale). La computazione non deterministica ci consente di fare operazioni con le informazioni quali-quantitative anziché con i dati, ovvero  con il contenuto informativo che i dati possono o meno esprimere. Un dato può essere considerato come un “insieme” che ha un contenuto informativo percentualmente differente a seconda del contesto e del target a cui è destinato. Ritornando all’esempio precedente sulle condizioni atmosferiche, un valore di temperatura dell’aria esterna di 15 °C rispetto alla scelta di vestirsi in maniera adeguata per uscire di casa fornisce una indicazione decisionale solo parziale (% certezza), se non è sovrapposta alle altre informazioni come ad es. la pressione atmosferica e l’umidità relativa. L’insieme risultante dall’intersezione dei tre insiemi di partenza ottenibile rispetto ad un target di “tempo di pioggia” o di “tempo soleggiato”, fornisce un valore % risultante di certezza più elevato rispetto a quello che ciascun dato di partenza può esprimere singolarmente: se consideriamo che la temperatura di 15°C rispetto al target “meteo-pioggia”, contribuisce per il 30%, mentre la pressione atmosferica per il 25% e l’umidità relativa per il 35%, si avrebbe che la decisione di vestirsi in un certo modo piuttosto che in un altro avrebbe un grado di certezza complessivo del 65,875% (somma insiemistica), che è superiore al 50% di soglia, anche se con ancora un 34,125% di % incertezza che potrebbe essere soddisfatto da un’altra “intersezione insiemistica” fornito da un ulteriore dato (ad es. dal valore della velocità del vento). Alle stesse conclusioni si potrebbe arrivare con dati differenti (v. es. millimetri di pioggia), sia in termini di contenuto informativo che  numerici.

e) Modellazione Reticolare della Conoscenza: dal punto di vista logico, ogni modello di conoscenza è rappresentabile da una “cella informativa base” dotata di “n” dati/info in ingresso (input) e “m” meta-informazioni in output: all’interno della cella è possibile avere differenti relazioni di inferenza input/output: dalla semplice inferenza XY (curva di conoscenza n=1, m=1), fino a intere matrici “n*m” inferenziali. Gli “m” output di una cella possono a loro volta diventare in parte o in toto, input per un’altra cella e così via fino a realizzare una rete di celle in grado di elaborare un numero teoricamente infinito di informazioni.

Un processo tipico di “modellazione” della conoscenza, soprattutto nella realizzazione di sistemi on-line di controllo, segue alcuni passi fondamentali come la formalizzazione e validazione dei dati acquisiti da sorgenti eterogenee esterne, la normalizzazione rispetto ai range di operatività, l’inferenziazione di cross-matching (inferentation-integration-data fusion),  la de-normalizzazione dei risultati target ottenuti (v. Fig.2).

Fig.2 -Processo tipico di Modellizzazione della Conoscenza (Knowledge in Action)

Dal punto di vista concettuale [7], questo processo di modellazione della conoscenza è raffigurabile anche come una rete neurale artificiale costituita da “nodi” (neuroni) come unità base di elaborazione delle informazioni (Basic-Info) e “collegamenti” (sinapsi) come adduttori di inferenza caratterizzata da un grado di certezza (“peso” dinamico non probabilistico).

Grado di innovazione rispetto allo “Stato dell’Arte”: il grado di innovazione di questa metodologia rispetto allo “Stato dell’Arte”, risiede essenzialmente nei seguenti punti:

  1. rispetto alle Reti Neurali Artificiali (ANN) ogni nodo-neurone i-esimo è in grado di elaborare dinamicamente un numero elevato di input/output (multidimensionalità inferenziale), anziché un solo input/output con un’unica (e spesso statica), funzione di inferenza (attivazione);
  2. l’elaborazione inferenziale all’interno di ciascun nodo ha un adattamento continuo (apprendimento), ma rimane sempre “visibile”: è possibile in ogni momento ispezionare la configurazione di ciascun nodo della rete e dei relativi collegamenti-sinapsi, per cui il processo cognitivo è sempre tracciabile (cosa in genere non possibile nelle ANN);
  3. rispetto ai  procedimenti statistico-probabilistici ed in particolare alle Reti Bayesiane, i Modelli di Conoscenza operano sul grado di certezza dei contenuti informativi, secondo un processo incrementale che ne riduce progressivamente l’errore, ottimizzando realisticamente il valore del processo cognitivo: ciò cambia totalmente il punto di vista rispetto al problema della disponibilità di dati storici e dei campioni statisticamente significativi, essendo in grado di utilizzare tutte le informazioni quantitative, qualitative o anche incerte di cui si è a disposizione, giungendo sempre ad una conclusione, con un livello di qualità ovviamente inversamente proporzionale alla stessa qualità degli input.

Campi di Applicazione: l’utilizzo di questi Modelli di Conoscenza offre diverse possibilità, con riferimento sia ai sistemi on-line/real-time e di Early-Warning (EWS), sia ove vi sia la necessità di supportare la diagnostica e la presa di decisione, particolarmente in situazioni caratterizzate da interdisciplinarietà, eterogeneità quantitativa e qualitativa dei dati, come ad es., nei processi ambientali, nella gestione dei processi industriali  e addirittura, nella valutazione di beni intangibili come ad es. il valore della conoscenza stessa.

Lo spettro di azione dello sviluppo dei modelli di conoscenza è comunque molto ampio: a partire dai casi  più semplici (2D) nei quali i modelli di riferimento (in questo caso “Curve di Conoscenza”) sono già noti ed esplici,  ovvero i modelli sono  impliciti e derivanti dall’elaborazione dati storici e dall’esperienza, fino a casi più complessi nei quali si hanno moltissime informazioni quanti-qualitativamente eterogenee derivanti da differenti sorgenti di dati (v. Big-Data), dove è necessario lo sviluppo di modelli di conoscenza del tipo Rete Neurali a Neuroni Esperti (v. Fig.2  XBASE tool, ANOVA).

Fig.3 -Processo tipico di Modellizzazione della Conoscenza (ANOVA XBASE tool – Fig. da ENEA/BATTLE)

Le esperienze applicative dei modelli di conoscenza sviluppate dallo scrivente dal 1993 ad oggi, riguardano soprattutto l’ambito dei Sistemi Esperti di Supporto alle Decisioni, dei Sistemi on-line/real-time di Monitoraggio “Consapevole” e dei Sensori Software Intelligenti. In particolare, sono stati realizzati sistemi per:

  • la rilevazione early-warning del rischio/credito;
  • per il recupero di centri storici post-sisma;
  • sistemi di controllo processo in ambito alimentare (mosto/vino, olio d’oliva EV, caseario),
  • il monitoraggio on-line  della qualità delle acque e del loro trattamento depurativo;
  • il controllo early-warning degli Incendi boschivi e della salvaguardia ambientale;
  • il monitoraggio early-warning degli odori molesti da impianti di trattamento rifiuti;
  • il controllo energy saving di processi biologici;
  • la gestione early-warning/predittiva della manutenzione di impianti industriali;
  • diversi studi fattibilità operativa.

Note conclusivesi è presentata una metodologia sperimentata da parte dell’autore oramai nell’arco di un ventennio e che, nata per sviluppare sistemi basati sulla conoscenza (Knowledge Based System) e sistemi esperti di controllo, ha consentito una generalizzazione dell’approccio mentale rivelatasi molto utile nei processi decisionali. L’esperienza applicativa ha infatti mostrato la possibilità di considerare questa metodologia, oltre che uno strumento per rendere più performanti i sistemi informatici e di controllo automatico, anche come una  vera e propria nuova “forma mentis” che consente di gestire la conoscenza in maniera interdisciplinare ed efficiente (Interdisciplinary Thinking)[7].

Conoscere per competere perché il futuro non è il prolungamento del passato…[7]

Bibliografia

  • [1] Kendal, S.L.; Creen, M. (2007), An introduction to knowledge engineering, London: Springer, ISBN  9781846284755, OCLC 70987401
  • [2] Jackson, Peter (1998), Introduction To Expert Systems (3 ed.), Addison Wesley, p. 2, ISBN 978-0-201-87686-4
  • [3] Mohsen Kahani – “Expert System & Knowledge Engineering in Wikipedia” (2012)
  • http://fumblog.um.ac.ir/gallery/435/Expert_System_Knowledge_Engineering_in_Wikipedia.pdf
  • [4] Pejman Makhfi – “Introduction to Knowledge Modeling” (2013) –  http://www.makhfi.com/KCM_intro.htm#What
  • [5] Luca Console “Problem Solving Diagnostico: Evoluzione e Stato dell’Arte” – Dipartimento di Informatica – Università di Torino – AI*IA Notizie – Anno X n°3 Settembre 1997.
  • [6] L. Console, P. Torasso: “Diagnostic Problem Solving: Combining Heuristic, Approximate and Causal Reasoning”, Van Nostrand Reinhold, 1989.
  • [7] Giovanni Mappa “Interdisciplinary Thinking by Knowledge Sysnthesis” – IlMioLibro Editore (2011). http://ilmiolibro.kataweb.it/schedalibro.asp?id=647468
  • [8] N. Brancati, G. Mappa (2009) “Capturing Knowledge in Real-Time ICT Systems to Boost Business Performance” ANOVA – Cognitive and Metacognitive Educational Systems: Papers from the AAAI Fall Symposium (FS-09-02)
  • [9] Henrion, M. (1987). “Uncertainty in Artificial Intelligence: Is probability epistemologically and heuristically adequate?” In Mumpower, J., editor, Expert Judgment and Expert Systems, pages 105–130. Springer-Verlag, Berlin, Heidelberg.
  • [10] G.Mappa ‐ “Distributed Intelligent Information System for Wastewater Management Efficiency Control” INFOWWATER‐ Wastewater Treatment Standards and Technologies to meet the Challenges of 21s t Century 4‐ 7th April 2000 AD – Queen’s Hotel, Leeds, UK ‐ 2000
  • [11] G.Mappa, et Alii ‐ “Sistema di monitoraggio e gestione del trattamento delle acque cromiche” ‐ AI*IA99 – 6° Congresso della Associazione Italiana per l’Intelligenza Artificiale 7 Settembre 1999 ‐ Facoltà di Ingegneria– BOLOGNA ‐ 1999
  • [12] EDILMED ‐ Convegno “Tecnologie Post‐Industriali trasferibili all’Architettura e all’Edilizia” ‐ Mostra d’Oltremare ‐19‐21 Maggio. Presentazione relazione su XBASEtool: “La Tecnologia dei Sistemi Esperti nell’Edilizia: Qualità Edilizia e Manutenzione Intelligente” ‐ G.Mappa‐ Napoli, 1995.
  • [13] G. Mappa, R. Tagliaferri, D. Tortora – “On- line Monitoring based on Neural Fuzzy Techniques applied to existing hardware in Wastewater Treatment Plants” – AMSEISIS’ 97 – INTERNATIONAL SYMPOSIUM on INTELLIGENT SYSTEMS – September 12, 1997.
  • [14] G. Mappa, G. Falivene, M. Meneganti, R. Tagliaferri – “Fuzzy Neural Networks for Function Approximation” – Proceedings of the 6th International Fuzzy Systems Association World Congress IFSA (1997).
  • [15] G. Mappa – “Distributed Intelligent Information System for Wastewater Management Efficiency Control” – Wastewater Treatment Standards and Technologies to meet the Challenges of 21s t Century 4-7th April 2000 AD – Queen’s Hotel, Leeds, UK.
  • [16] G. Mappa, G. Salvi, G. Tagliaferri, R.  (1995) “A Fuzzy Neural Network for the On-Line Detection of B.O.D.” – Wirn Vietri ’95, VII Italian Workshop on Neural Nets ITALY.
  • [17] G. Mappa, A. Sciarretta, S. Moroni e M. Allegretti (1993) “Sistema Esperto per la Gestione degli Impianti di Trattamento delle Acque Urbane” ‐ Congresso Biennale ANDIS’93 ‐ Palermo ‐ 21‐23 Settembre ‐Vol.II. ‐ 1993
  • [18] “The Fractal Nature of Knowledge”  Arnold Kling – Posted on December 4, 2008 by sethearley. http://sethearley.wordpress.com/2008/12/04/the-fractal-nature-of-knowledge/
  • [19] Benoît B. Mandelbrot, Les objets fractals: forme, hasard et dimension, 1986
  • [20] Abraham Harold Maslow, A Theory of Human Motivation, Psychological Review 50(4) (1943):370-96.
  • [21] Carla O’Dell and C. Jackson Grayson, Jr. – “If Only We Knew What We Know,” Free Press, 1998.
  • [22] http://www.conoscenzaefficiente.it/
  • [23] http://waterenergyfood.net/2013/08/08/it-en-algoritmi-sullo-sviluppo-della-interdisciplinarieta-del-buonsenso-e-del-valore/
  • [24] http://waterenergyfood.net/2013/06/10/il-valore-della-conoscenza-nellera-della-net-economy-2-parte/
  • [25] http://waterenergyfood.net/2013/06/18/il-valore-della-conoscenza-nellera-della-net-economy-3-parte/

Approccio Statistico “ANOVA” vs “Modelli di Conoscenza” nell’Analisi di Processi Biologici

A-KM METODOLOGIA DI APPROCCIO: Modelli di Conoscenza

La scelta della metodologia dei “Modelli di Conoscenza”, nasce dall’esigenza di controllare e ottimizzare la funzionalità di un processo complesso che, specialmente se presenta una sezione  “biologica” e input (carichi) variabili quali-quantitativamente nel tempo, non può essere assimilato ad un processo ciclico ripetitivo.

Pertanto, si sceglie in questi casi di non seguire un tradizionale approccio statistico (v. ANOVA– ANalysis Of VAriance), in quanto basato essenzialmente su dati storici e in genere molto costoso, preferendo un approccio più vicino agli esperti di processo, basato sulla “fusione” interdisciplinare tra dati rilevati e conoscenza degli esperti: i Modelli di Conoscenza.

Principi Base del Metodo basato sui Modelli di Conoscenza

a) Approccio Sistemico: realtà suddivisa in processi unitari (input/output), interagenti tra loro

b) Significatività e Rappresentatività delle Misure: è molto importante assicurarsi che i campioni oggetti di indagine siano realmente rappresentativi della realtà operativa o di classi di esse; pertanto le prove vanno eseguite definendo i parametri di caratterizzazione, come ad es.: Valore X = ¦[Xmin, Xmax, Xmed, X+freq, durata(X+freq)]

c) Modellazione delle Inferenze Input/Output: algoritmi di correlazione sistemica.

CONFRONTO METODOLOGIE PRO CONTRO

Modelli Statistici

 

  • Forniscono una analisi più oggettiva rispetto ai dati acquisiti (storici).

 

  • Metodologia più conosciuta.
  • Elaborano dati storici e quindi sono poco generalizzabili: interpretazione dei dati al passato.
  • Più costosi perché necessitano di numerose prove per realizzare un campione statistico rappresentativo
  • Risolvono gli errori e le discrepanze come Varianza Statistica e sulla base di Test Multifattoriali di Significatività (ANOVA – Analysis of Variance) non sempre generalizzabili.
  • Risultati  in Output in genere non generalizzabili e non migliorabili incrementalmente, se non a costo di ripetere l’intera analisi.
Modelli di Conoscenza
  • Interpretazione dei dati rispetto all’attualità operativa, perché si basano su dati il cui valore è quello derivante dall’esperienza operativa aggiornata come “media ragionata” (valore più frequente e plausibile).
  • Meno costosi perché basati su un numero di prove minimo necessario a definire le classi operative di funzionamento.-   Risolvono gli errori e le discrepanze attraverso la Cross-Correlation delle informazioni assunte e sulla base della propagazione della certezza.
  • Risultati in Output generalizzabili (per definizione) e migliorabili incrementalmente.
  • Forniscono una analisi più influenzabile dalla expertise degli operatori  che detengono la conoscenza.

 

  • Metodologia meno conosciuta.

Servizi Avanzati di Controllo Processo e Integrazione di Sistemi Early Warning di Controllo

2012 – in corso
ENDRESS + HAUSER 
Accordo di Partnership per lo sviluppo di Modelli di Conoscenza per l’ottimizzazione di processo e il risparmio energetico (Liquicontrol NDP)

Ref. in primo piano:

2008-2009
ENDRESS + HAUSER Conducta GmbH+Co di Gerlingen (D)
Ricerca, Sviluppo e Sperimentazione di Controllori di Processo “Knowledge Embedded”. Gerlingen 14 Maggio 2008  IMG_0300
2008-2009
Università di Foggia – PuntoQualità Srl
Progettazione e Sviluppo di un Sistema di Gestione Informatizzata delle Aree Naturali Protette- CyberPARK 2000”– POR Puglia Misura 6.2 azione c)  Prevenzione Incendi Progetto CyberPark
2005-2008
ENEA – Casaccia

 

2005-2008 – Progetto di Ricerca Europea – “BATTLE – Best Available Technique for water reuse in TextiLE SMEs” (05 ENV/IT/000846), finanziato dal programma LIFE dell’Unione Europea, della durata di 3 anni e coordinato dall’ENEA  C5- BATTLE-Anova (2)  SuccessoLIFE_new  SIDISA_Casarci
2007
TAKNOW Mind International Srl
Sviluppo e Realizzazione di un Sistema Esperto basato su Logica Fuzzy per il Monitoraggio Diagnostico dei dati operativi di funzionamento di Unità Ascensori – TaKnow Mind International Srl     Relazione tecnico scientifica di progetto
2000-2004
Comune di Villasimius
SISTEMA ESPERTO (SCETTRO-INTESIS) per il Telecontrollo dei Processi di Depurazione delle Acque Reflue Urbane e del loro Trattamento Terziario per il Riutilizzo in agricoltura e per le infrastrutture turistiche  Villasimius
2005-2007
IAM SpA
Progetto di Ricerca ODOREXP –“Ricerca e Sviluppo di un Sistema Esperto Real-Time per il Monitoraggio degli Odori da Impianti di Depurazione – MIUR (Ministero della Ricerca).
Ricerca e Sviluppo Sperimentale di un Sistema Informatico per il Controllo di Accettazione Qualità dei Rifiuti Liquidi Speciali non pericolosi, conferiti con autobotti a impianti di depurazione
2003-2004
Azienda Consortile ALTO CALORE
Realizzazione di un SISTEMA ESPERTO di Monitoraggio (INTESYS-WaterMultiSkill) della qualità delle acque sotterranee e superficiali della “Piana del Dragone”
2003-2004
Università di Napoli
Consorzio ISIDE
Tecnologie Esperte per il Telecontrollo e la Telesorveglianza dell’Ambiente Costruito Strategico – Progetto di Ricerca TECSAS (PON “Ricerca, Sviluppo Tecnologico, Alta Formazione” 2000-2006)  – Centro ISIDE (SA) – Sistema Esperto per il Monitoraggio Remoto di Strutture Strategiche da Eventi Vibratori /Sismici
2002-2003
ENI Acqua Campania
RITONNARO Costruzioni SpA
Progettazione e Sviluppo “chiavi in mano” Sistema di Telecontrollo (LOOKOUT – INTESYS)  Rete Idrica dell’Area Litoranea Messicana dell’Acquedotto della Campania Occidentale (ENI-Acqua Campania)
2001-2003
COMAT Costruzioni SpA
Realizzazione di un SISTEMA ESPERTO per il Monitoraggio (INTESYS-WaterMultiSkill) di Processo dell’Impianto di Affinamento Acque – Taranto “Gennarini”
2001
GISI
Sensori di Misura Intelligenti per Uso Acquedottistico: aspetti metrologici e certificazione della catena di misura.  GISI-ANOVA1
2000-2001
AMGA SpA – Genova
Progettazione e Sviluppo “chiavi in mano”  Sistema Esperto e di Monitoraggio (SCETTRO-INTESYS) dei processi di trattamento acque dell’impianto di depurazione “Darsena”
Elaborazione della Base di Conoscenza nel campo dei Processi di Trattamento degli Odori, della Disinfezione delle Acque Primarie e Reflue, della Strumentazione di Misura On-Line

DATA Intelligence

DataIntelligenceAnalisi e Modellazione dei Dati per il Controllo di Qualità e di Efficienza

DATI sono entità statiche“fotografie” di fatti che si presentano in forma esplicita; in genere sono espressi in forma alfanumerica, sono prodotti da fonti (database, sensori,…) che ne condizionano poi la loro “qualità”.  Le INFORMAZIONI sono entità dinamiche ed evolutive, caratterizzate da un proprio ciclo di vita, nascono in forma esplicita o latente dai dati, sono correlate ad uno o più processi (mentali, personali, ambientali, produttivi, ecc.) ed esercitano su tali processi una propria influenza (o “peso”).

Servizi di DATA INTELLIGENCE finalizzati alla gestione di Qualità dei DATI e delle INFORMAZIONI  (SISTEMA_XE04-ANOVA):

  • Sistemi di Telemetria Web-Server, installati e configurati presso i clienti;
  • Fornitura via Web di Report di “Analisi/Qualificazione dei Dati”, “Analisi dei Trend” e di “Rilevazione delle Anomalie;
  • Sviluppo di Modelli Funzionali/Econometrici di Ottimizzazione dei costi energetici e di manutenzione;
  • Controllo Processo in Tempo Reale e Rilevazione di Eventi Anomali e di Pre-Allarme EWS-Early-Warning System.

[EN] DEMO youtube: Dairy Trend Analysis

L’acquisizione di dati alfanumerici da sensori, dispositivi elettronici e informatici, è un processo (non gratuito) di fondamentale importanza per ottenere informazioni e per implementare nuova conoscenza. La qualità dei dati influenza l’intero sistema informativo e di comunicazione e può rendere le attuali avveniristiche tecnologie ICT e di condivisione delle informazioni inesorabilmente fallaci, se non addirittura dannose. La scarsa Qualità dei Dati può ostacolare o danneggiare seriamente l’efficienza e l’efficacia di organizzazioni e imprese. La crescente consapevolezza di tali ripercussioni ha condotto a importanti iniziative pubbliche come la promulgazione del “Data Quality Act” negli Stati Uniti e della direttiva 2003/98 del Parlamento Europeo.

(http://www.epa.gov/quality/informationguidelines/documents/EPA_InfoQualityGuidelines.pdf).

Servizi per la qualità e ottimizzazione degli impianti:

si possono distinguere tre livelli operativi:

1. DATA ANALYSIS (DA): Qualificazione Dati/Informazioni – report prestazionali (KPI)

Il servizio (DA) prevede un primo intervento finalizzato alla qualificazione dei dati sulla base della identificabilità e tracciabilità (spazio-temporale) degli stessi della verifica del formato e del grado di accuratezza, nonchè della necessità di una riconciliazione degli errori. Viene effettuata inoltre un’analisi del trend storico e lavalutazione di indicatori di Controllo e di Efficienza Prestazionale KPI.

2. EVENT DETECTION (ED): Controllo Avanzato di Processo – Rilevazione Anomalie & Diagnosi

Il servizio (ED) si basa sulle seguenti attività fondamentali:

  • Analisi Multidimensionale dei dati;
  • Rilevazione e Identificazione di Eventi Anomali (FDD);
  • Estrazione di Conoscenza dai dati (KE).

L’estrazione di “Conoscenza” dai dati e dalle informazioni dello scenario di riferimento (impianto/processo), consente di “mettere in chiaro” i modi ed i comportamenti (regole) del sistema di monitoraggio, ciò consentirà di operare una successiva fase di modellazione finalizzata al controllo ed ottimizzazione di processo

3. DATA MODELLING (DM): Modellazione Funzionale/Econometrica di supporto Decisionale

In sintesi le attività previste per lo sviluppo del servizio prevedono la realizzazione di:

  • Modelli di Controllo Funzionale ed Ottimizzazione di Processo;
  • Modelli di Controllo Predittivo (MPC);
  • Modelli Funzionali/Econometrici a Supporto delle Decisioni di Gestione.

_____________________________________________________________________________________________________

Sistema Esperto di Ottimizzazione a supporto degli Allevatori di Cavalli di Razza Araba

1-s2.0-S0888754305002491-gr2r1PratoPalazzoC1

Progetto per lo Sviluppo della Base di Conoscenza Informatica e realizzazione di un Sistema di Supporto alle Decisioni finalizzato alla salvaguardia, alla preservazione e al miglioramento delle caratteristiche genetiche morfo-funzionali dei Cavalli Purosangue di Razza Araba.

_______________________________________________________

Il cavallo arabo è una fra le razze equine tra le più antiche e utilizzate. È una razza a sangue caldo originaria della Penisola arabica, utilizzato per creare o per migliorare alcune razze, fra cui anche il purosangue inglese. Si tratta infatti, di un tipologia di cavalli dall’aspetto  molto nobile, dal busto fine, dalla pelle sottile ed elastica ricoperta da peli corti e lucenti. Gli zoccoli sono piccoli e durissimi; gli appiombi sono perfetti. Viene impiegato anche per creare o migliorare altre razze in ogni angolo della terra. Il tema della salvaguardia, della preservazione e del miglioramento genetico di questi animali, attraverso procedure che implicano una selezione consapevole e mirata delle specie, è quindi strettamente correlato al reddito economico degli allevatori, in quanto il mantenimento e l’evoluzione delle caratteristiche morfo-funzionali ottenute generazione per generazione, ne aumenta notevolmente il loro valore richiesto sul mercato.

Nel progetto di ricerca, la PRATO PALAZZO Srl, impresa che opera nel campo dell’allevamento di equini ed altre specie animali, intende verificare la possibilità di rendere più efficace ed economico il miglioramento genetico dei cavalli di razza araba.  A tale scopo, attraverso attività mirate di analisi e di ricerca, si intende sviluppare una “Base di Conoscenza” informatica, vale a dire non solo una elaborazione statistica di dati storici “a posteriori” (quindi inefficaci per la pianificazione ottimale degli accoppiamenti) su i criteri di selezione che hanno generato i migliori risultati, ma sulla base dell’utilizzazione di una computazione non-deterministica, per tener conto del patrimonio di conoscenza che risiede nell’esperienza degli stessi allevatori, soprattutto per quanto riguarda gli elementi distintivi a valore aggiunto.

PratoPalazzo RA3A tale scopo la società ANOVA Studi e Ricerche Interdisciplinari, sta realizzando un sistema basato su un “Modello di Conoscenza” (Sistema Esperto), in grado di inferenziare più efficacemente la valutazione del valore genetico delle singole fattrici e dei singoli degli stalloni rispetto ad Indicatori di Merito (Tipicità, Testa e Collo, Dorso e Armonia, Arti, Movimento, ecc.) oggi disponibili, con il fine ultimo di supportare la definizione ottimale di Piani di Accoppiamento più efficaci dal punto di vista dei risultati di selezione e più efficienti dal punto di vista dei tempi e dei costi. Il Modello si basa essenzialmente sullo sviluppo di un originale algoritmo inferenziale di valutazione e di confronto BAHMM (Best Arab Horse Matching Model), in grado di porre in relazione le possibili performance di accoppiamento tra una prefissata fattrice (con un determinato patrimonio genetico, grado di parentela, tipicità, condizioni di vita e ambientali) e una lista di possibili stalloni (ciascuno con le proprie caratteristiche di “riproduttore”, di patrimonio genetico, grado di parentela, tipicità, ecc.), rispetto ad un quadro di tipicità e caratteristiche di riferimento “target” di mercato (show, endurance, corsa, ecc.), che si intendono ottenere nella nuova generazione di puledri.

L’obiettivo finale del progetto è in ultima analisi, quello di realizzare uno strumento condivisibile fra gli allevatori di cavalli, in grado di supportare le scelte rispetto alla selezione e all’accoppiamento dei cavalli, riducendo i costi del 40% e aumentando contestualmente il “valore” dei puledri e quindi, la redditività dell’allevatore, in funzione delle specificità richieste dal mercato di destinazione.

Il primo prototipo di sistema BAHAMM è finalizzato a supportare il miglioramento delle tipicità e caratteristiche estetiche/morfologiche dei cavalli di razza araba destinati alla partecipazione ai vari “Show” tenuti in varie località dell’Italia e del mondo. Oggi, nessuna notevole razza equina è esente dall’impronta miglioratrice del cavallo arabo.

Esiste una organizzazione specifica di riferimento per il controllo di questa razza, la WAHO (World Arabian Horse Organization), per la quale migliaia di cavalli di puro sangue arabo nel mondo, vengono qui ogni anno registrati. Nelle gare di fondo il cavallo di razza araba non ha rivali grazie al suo metabolismo particolare. È nota inoltre la sua capacità di portare grossi carichi, fuori dai consueti rapporti peso trasportato/peso del cavallo, validi per tutte le altre razze.

L’arabo è famoso per la sua meravigliosa disponibilità, temperamento e bontà, stile e bellezza associate a facilità di apprendimento e serietà. Il libro genealogico del Cavallo di Purosangue Arabo è gestito in Italia dall’Associazione Nazionale Italiana Cavallo Arabo, ANICA, ai sensi dell’Art.3 della legge 15 gennaio 1991 n. 30, sulla disciplina della riproduzione animale. Si tratta di una associazione giuridicamente riconosciuta, ai sensi del DPR 10.2.2000 n.361, tramite iscrizione, dal 10/05/2001, al n. 1 del Registro Prefettizio delle Persone Giuridiche di Parma. Il libro genealogico è regolato da un apposito disciplinare, in armonia con la normativa dell’Unione Europea.

La Figura Professionale del KNOWLEDGE WORKER Innovativo

Il Knowledge Worker Innovativo WKI

Il ruolo trainante del Ricercatore Industriale nelle PMI del futuro: il “Knowledge Worker Innovativo”. Un ruolo chiave all’interno delle imprese. Un’arma vincente nella sfida della competitività globalizzata. Una nuova figura professionale interdisciplinare di ricercatore industriale che assolva nelle PMI, il ruolo di dipartimento di R&S, in genere esclusivo delle grandi imprese, ma con peculiari caratteristiche di tempestività, flessibilità operativa e interattiva.

__________________________________

Per informazioni sul Corso di Formazione: